AAVS1 | |||||||
---|---|---|---|---|---|---|---|
Identifiers | |||||||
Aliases | AAVS1 , AAV, adeno-associated virus integration site 1 | ||||||
External IDs | GeneCards: AAVS1 | ||||||
Orthologs | |||||||
Species | Human | Mouse | |||||
Entrez |
| ||||||
Ensembl |
|
| |||||
UniProt |
|
| |||||
RefSeq (mRNA) |
|
| |||||
RefSeq (protein) |
|
| |||||
Location (UCSC) | n/a | n/a | |||||
PubMed search | [1] | n/a | |||||
Wikidata | |||||||
|
Adeno-associated virus integration site 1 is a viral integration site that in humans is encoded by the AAVS1 gene located on chromosome 19. [2]
A bacterial artificial chromosome (BAC) is a DNA construct, based on a functional fertility plasmid, used for transforming and cloning in bacteria, usually E. coli. F-plasmids play a crucial role because they contain partition genes that promote the even distribution of plasmids after bacterial cell division. The bacterial artificial chromosome's usual insert size is 150–350 kbp. A similar cloning vector called a PAC has also been produced from the DNA of P1 bacteriophage.
Parvoviridae is a family of small, rugged, genetically-compact DNA viruses, known collectively as parvoviruses. There are currently more than 100 species in the family, divided among 23 genera in three subfamilies. Parvoviridae is the sole taxon in the order Quintoviricetes.
Adeno-associated viruses (AAV) are small viruses that infect humans and some other primate species. They belong to the genus Dependoparvovirus, which in turn belongs to the family Parvoviridae. They are small replication-defective, nonenveloped viruses and have linear single-stranded DNA (ssDNA) genome of approximately 4.8 kilobases (kb).
Leber congenital amaurosis (LCA) is a rare inherited eye disease that appears at birth or in the first few months of life.
Viral vectors are tools commonly used by molecular biologists to deliver genetic material into cells. This process can be performed inside a living organism or in cell culture. Viruses have evolved specialized molecular mechanisms to efficiently transport their genomes inside the cells they infect. Delivery of genes, or other genetic material, by a vector is termed transduction and the infected cells are described as transduced. Molecular biologists first harnessed this machinery in the 1970s. Paul Berg used a modified SV40 virus containing DNA from the bacteriophage λ to infect monkey kidney cells maintained in culture.
A helper dependent virus, also termed a gutless virus, is a synthetic viral vector dependent on the assistance of a helper virus in order to replicate, and can be used for purposes such as gene therapy. Naturally-occurring satellite viruses are also helper virus dependent, and can sometimes be modified to become viral vectors.
FK506-binding protein 4 is a protein that in humans is encoded by the FKBP4 gene.
Dependoparvovirus is a genus in the subfamily Parvovirinae of the virus family Parvoviridae; they are Group II viruses according to the Baltimore classification. Some dependoparvoviruses are also known as adeno-associated viruses because they cannot replicate productively in their host cell without the cell being coinfected by a helper virus such as an adenovirus, a herpesvirus, or a vaccinia virus.
Friend leukemia integration 1 transcription factor (FLI1), also known as transcription factor ERGB, is a protein that in humans is encoded by the FLI1 gene, which is a proto-oncogene.
Gene therapy for color blindness is an experimental gene therapy aiming to convert congenitally colorblind individuals to trichromats by introducing a photopigment gene that they lack. Though partial color blindness is considered only a mild disability, it is a condition that affects many people, particularly males. Complete color blindness, or achromatopsia, is very rare but more severe. While never demonstrated in humans, animal studies have shown that it is possible to confer color vision by injecting a gene of the missing photopigment using gene therapy. As of 2018 there is no medical entity offering this treatment, and no clinical trials available for volunteers.
Retinal gene therapy holds a promise in treating different forms of non-inherited and inherited blindness.
Alipogene tiparvovec, sold under the brand name Glybera, is a gene therapy treatment designed to reverse lipoprotein lipase deficiency (LPLD), a rare inherited disorder which can cause severe pancreatitis. It was recommended for approval by the European Medicines Agency in July 2012 and approved by the European Commission in November of the same year. It was the first marketing authorisation for a gene therapy treatment in either Europe or the United States.
Self-complementary adeno-associated virus (scAAV) is a viral vector engineered from the naturally occurring adeno-associated virus (AAV) to be used as a tool for gene therapy. Use of recombinant AAV (rAAV) has been successful in clinical trials addressing a variety of diseases. This lab-made progeny of rAAV is termed "self-complementary" because the coding region has been designed to form an intra-molecular double-stranded DNA template. A rate-limiting step for the standard AAV genome involves the second-strand synthesis since the typical AAV genome is a single-stranded DNA template. However, this is not the case for scAAV genomes. Upon infection, rather than waiting for cell mediated synthesis of the second strand, the two complementary halves of scAAV will associate to form one double stranded DNA (dsDNA) unit that is ready for immediate replication and transcription. The caveat of this construct is that instead of the full coding capacity found in rAAV (4.7-6kb) scAAV can only hold about half of that amount (≈2.4kb).
James M. Wilson is a biomedical researcher with expertise in gene therapy. Wilson graduated from Albion College and the University of Michigan . He completed residency training in Internal Medicine at the Massachusetts General Hospital followed by a postdoctoral fellowship at the Whitehead Institute.
Saswati Chatterjee is a virologist working as a professor at the Los Angeles City of Hope National Medical Center in the research department. Some of the viral areas she researches are: stem cells, gene therapy, genome editing, and parvovirus. Her main and current area of research is using Adeno-Associated Virus Vectors (AAV-Vectors). Additionally, she has had a role in many publications.
Adeno-associated virus (AAV) has been researched as a viral vector in gene therapy for cancer treatment as an Oncolytic Virus. Currently there are not any FDA approved AAV cancer treatments, as the first FDA approved AAV treatment was approved December 2017. However, there are many Oncolytic AAV applications that are in development and have been researched.
Richard Jude Samulski is an American scientist, inventor, and academic recognized for his pioneering work in gene therapy and adeno-associated virus vectors (AAV) in the fields of molecular virology and pharmacology.
Jean Bennett is the F. M. Kirby Professor of Ophthalmology in the Perelman School of Medicine at the University of Pennsylvania. Her research focuses on gene therapy for retinal diseases. Her laboratory developed the first FDA approved gene therapy for use in humans, which treats a rare form of blindness.
Kenneth I. Berns is an American virologist who is currently a Distinguished Professor Emeritus at the department of Molecular Genetics and Microbiology at the University of Florida College of Medicine. He is primarily known for his work on adeno-associated viruses (AAV), and his group was one of the first which showed the specificity of the integration of the AAV genomes into the cellular genome. He has been a member of the National Academy of Sciences since 1995.
Mavis Agbandje-McKenna is a Medical Biophysicist, Structural Virologist and a Professor of Structural Biology as well as the Director of the Center for Structural Biology at the University of Florida in Gainesville, Florida. Agbandje-McKenna has dedicated her career to solving parvovirus structures using X-ray crystallography and cryogenic electron microscopy and has done much of the initial work to elucidate the basic structure and function of adeno-associated viruses (AAVs). Her viral characterization and elucidation of antibody binding sites on AAV capsids has led to the development of viral capsid development and gene therapy approaches that evade immune detection and can be used to treat human diseases such as muscular dystrophies. Agbandje-McKenna was recognized with the 2020 American Society of Gene and Cell Therapy Outstanding Achievement Award for her contributions to the field.
This article on a gene on human chromosome 19 is a stub. You can help Wikipedia by expanding it. |