This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
The Research School of Physics (RSPhys) was established with the creation of the Australian National University (ANU) in 1947. Located at the ANU's main campus in Canberra, the school is one of the four founding research schools in the ANU's Institute of Advanced Studies.
As part of the Institute of Advanced Studies it is primarily a research school with limited interaction with the ANU's undergraduate students. With a total of around 200 employees the school has approximately 60 PhD students and 70 academic staff. The school is divided into separate research departments although PhD students can often be based in more than one department. [1]
RSPhys is one of the leading physics research institutions in Australia. Major research facilities at the school include the 14UD NEC Pelletron accelerator and associated modular superconducting linac run by the Department of Nuclear Physics, the H-1NF flexible Stellarator Heliac run by the Plasma Research Laboratory plus an extensive range of smaller experimental and computational equipment.
Research ranges from the fundamental to the applied, including both experimental and theoretical work. The school's primary research areas are: materials science and engineering; lasers, nonlinear optics and photonics; nanotechnology and mesoscopic physics; physics of atoms, molecules and the nucleus; plasma physics and surface science; physics and the environment. [1]
The nuclear physics 14UD is one of a handful of large Van de Graaff accelerators in the world. It was the largest machine of its type when installed in 1974. After many upgrades the 14UD is capable of running terminal voltage of up 16.7 MV. Charging is via three inductive charging chains. In 1996 a superconducting RF linac was installed that is used as an energy booster for the 14UD enabling higher energies to be reached. [2]
Sir Mark Oliphant was the founder of the school and its first director from 1950 to 1963. The school was originally called the "Research School of Physical Sciences" with "Engineering" being added to its title in 1990 to highlight the large amount of engineering work that is undertaken in the school. The name was again changed in 2008 to the "Research School of Physics and Engineering" to coincide with the merger with ANU's undergraduate physics teaching department. In support of a university strategic focus on the discipline of Engineering at ANU, the School name was changed to "Research School of Physics" in August 2019. Nonetheless, the Research School of Physics retains a strength in graduate research in the fields of electronic materials, optics and instrumentation engineering. The long history of engineering physics remains an attraction for students and staff who work between the disciplines of physics and engineering.
For much of the early years the focus of a large part of the school was designing, re-designing and building a cyclo-synchrotron that in its final intended form was to produce a beam of 10.6 GeV protons for nuclear physics research. Designed to be a world class research machine it was referred to within the school as "The Big Machine". Due to shifting goalposts and huge costs the cyclo-synchrotron was never completed. The small 7.7 MeV cyclotron designed to function as the proton injector was completed in 1955, and the large homopolar generator intended to power the system was first operated in 1962, but by this time work on "The Big Machine" itself had been abandoned.
The homopolar generator, the largest ever built, was capable of supplying currents of over 2 megaamperes. Even though it was never used for its intended purpose it ended up being used for numerous research projects requiring an extremely high current source until its disassembly in 1986. One of these projects was the invention and development of the railgun by John Barber and Richard Marshall. [3] The school also benefited in an indirect way from the construction of the massive generator, the accumulated engineering experience and techniques where later used to build other research equipment around the school including the Plasma Physics H1NF Heliac. Some parts of the homopolar generator are now on permanent display on the lawn outside the research school.
The school has been home to many different particle accelerators over the years. The first accelerator installed was a 1.25 MV Cockcroft-Walton known as HT1, this was in use from 1952 until 1967 when it was sold to the University of New South Wales. A second smaller 600 kV Cockcroft-Walton machine (HT2) was assembled in house using many spare parts acquired for HT1. In 1955 the UK government supplied a 33 MeV electron synchrotron as a gift. It was moved to the University of Western Australia in 1961. During 1960–1980 a HVEC EN tandem accelerator was used by nuclear physics for light ion research. 1975 saw the school's 14UD accelerator come online, which has since been augmented with a superconducting linear accelerator.
On 5 July 1960 a fire during the night destroyed much of the eastern end of the Cockcroft Building. The damage included the drawing office, many student's and staff's results and files and the control room for the 600 kV Cockcroft-Walton accelerator. The 600 kV accelerator though only water damaged had to be scrapped. Refurbishment of the burnt out area was completed in September 1961.
Early departments that have now been spun off into research schools of their own include the departments of Astronomy and Geophysics and Geochemistry. Geophysics and Geochemistry separated into the Research School of Earth Sciences in 1973. Mount Stromlo Observatory became part of the Department of Astronomy in 1957. While part of the school, the Department of Astronomy developed Siding Spring Observatory and installed many new telescopes at Mount Stromlo Observatory. It separated into the Research School of Astronomy and Astrophysics in 1986. [4]
DESY, short for Deutsches Elektronen-Synchrotron, is a national research centre for fundamental science located in Hamburg and Zeuthen near Berlin in Germany. It operates particle accelerators used to investigate the structure, dynamics and function of matter, and conducts a broad spectrum of interdisciplinary scientific research in four main areas: particle and high energy physics; photon science; astroparticle physics; and the development, construction and operation of particle accelerators. Its name refers to its first project, an electron synchrotron. DESY is publicly financed by the Federal Republic of Germany and the Federal States of Hamburg and Brandenburg and is a member of the Helmholtz Association of German Research Centres.
SLAC National Accelerator Laboratory, originally named the Stanford Linear Accelerator Center, is a federally funded research and development center in Menlo Park, California, United States. Founded in 1962, the laboratory is now sponsored by the United States Department of Energy and administrated by Stanford University. It is the site of the Stanford Linear Accelerator, a 3.2 kilometer (2-mile) linear accelerator constructed in 1966 that could accelerate electrons to energies of 50 GeV.
A linear particle accelerator is a type of particle accelerator that accelerates charged subatomic particles or ions to a high speed by subjecting them to a series of oscillating electric potentials along a linear beamline. The principles for such machines were proposed by Gustav Ising in 1924, while the first machine that worked was constructed by Rolf Widerøe in 1928 at the RWTH Aachen University. Linacs have many applications: they generate X-rays and high energy electrons for medicinal purposes in radiation therapy, serve as particle injectors for higher-energy accelerators, and are used directly to achieve the highest kinetic energy for light particles for particle physics.
The Australian National University (ANU) is a public research university and member of the Group of Eight, located in Canberra, the capital of Australia. Its main campus in Acton encompasses seven teaching and research colleges, in addition to several national academies and institutes.
Ernest Thomas Sinton Walton was an Irish physicist and Nobel laureate who first split the atom. He is best known for his work with John Cockcroft to construct one of the earliest types of particle accelerator, the Cockcroft–Walton generator. In experiments performed at Cambridge University in the early 1930s using the generator, Walton and Cockcroft became the first team to use a particle beam to transform one element to another. According to their Nobel Prize citation: "Thus, for the first time, a nuclear transmutation was produced by means entirely under human control."
A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed path increases with time during the accelerating process, being synchronized to the increasing kinetic energy of the particles. The synchrotron is one of the first accelerator concepts to enable the construction of large-scale facilities, since bending, beam focusing and acceleration can be separated into different components. The most powerful modern particle accelerators use versions of the synchrotron design. The largest synchrotron-type accelerator, also the largest particle accelerator in the world, is the 27-kilometre-circumference (17 mi) Large Hadron Collider (LHC) near Geneva, Switzerland, built in 2008 by the European Organization for Nuclear Research (CERN). It can accelerate beams of protons to an energy of 6.5 tera electronvolts (TeV or 1012 eV).
Mount Stromlo Observatory located just outside Canberra, Australia, is part of the Research School of Astronomy and Astrophysics at the Australian National University (ANU).
The Canadian Light Source (CLS) is Canada's national synchrotron light source facility, located on the grounds of the University of Saskatchewan in Saskatoon, Saskatchewan, Canada. The CLS has a third-generation 2.9 GeV storage ring, and the building occupies a footprint the size of a Canadian football field. It opened in 2004 after a 30-year campaign by the Canadian scientific community to establish a synchrotron radiation facility in Canada. It has expanded both its complement of beamlines and its building in two phases since opening. As a national synchrotron facility with over 1000 individual users, it hosts scientists from all regions of Canada and around 20 other countries. Research at the CLS has ranged from viruses to superconductors to dinosaurs, and it has also been noted for its industrial science and its high school education programs.
The High Energy Accelerator Research Organization, known as KEK, is a Japanese organization whose purpose is to operate the largest particle physics laboratory in Japan, situated in Tsukuba, Ibaraki prefecture. It was established in 1997. The term "KEK" is also used to refer to the laboratory itself, which employs approximately 695 employees. KEK's main function is to provide the particle accelerators and other infrastructure needed for high-energy physics, material science, structural biology, radiation science, computing science, nuclear transmutation and so on. Numerous experiments have been constructed at KEK by the internal and international collaborations that have made use of them. Makoto Kobayashi, emeritus professor at KEK, is known globally for his work on CP-violation, and was awarded the 2008 Nobel Prize in Physics.
The Budker Institute of Nuclear Physics (BINP) is one of the major centres of advanced study of nuclear physics in Russia. It is located in the Siberian town Akademgorodok, on Academician Lavrentiev Avenue. The institute was founded by Gersh Budker in 1959. Following his death in 1977, the institute was renamed in honour of Budker.
A homopolar generator is a DC electrical generator comprising an electrically conductive disc or cylinder rotating in a plane perpendicular to a uniform static magnetic field. A potential difference is created between the center of the disc and the rim with an electrical polarity that depends on the direction of rotation and the orientation of the field. It is also known as a unipolar generator, acyclic generator, disk dynamo, or Faraday disc. The voltage is typically low, on the order of a few volts in the case of small demonstration models, but large research generators can produce hundreds of volts, and some systems have multiple generators in series to produce an even larger voltage. They are unusual in that they can source tremendous electric current, some more than a million amperes, because the homopolar generator can be made to have very low internal resistance. Also, the homopolar generator is unique in that no other rotary electric machine can produce DC without using rectifiers or commutators.
NICA is a particle collider complex being constructed by the Joint Institute for Nuclear Research in Dubna, Russia to perform experiments such as Nuclotron ion beams extracted to a fixed target and colliding beams of ions, ions-protons, polarized protons and deuterons. The projected maximum kinetic energy of the accelerated ions is 4.5 GeV per nucleon, and 12.6 GeV for protons.
The Saskatchewan Accelerator Laboratory (SAL) was a linear accelerator facility on the University of Saskatchewan campus in Saskatoon, Saskatchewan, Canada. The facility was constructed in 1962 at a cost of $1.7M under the direction of Leon Katz. SAL was identified by the OECD as a National Large-Scale Facility. SAL provided support for radiology, chemistry and sub-atomic physics research.
Sir Ernest William Titterton was a British nuclear physicist.
Daresbury Laboratory is a scientific research laboratory based at Sci-Tech Daresbury campus near Daresbury in Halton, Cheshire, England. The laboratory began operations in 1962 and was officially opened on 16 June 1967 as the Daresbury Nuclear Physics Laboratory by the then Prime Minister of United Kingdom, Harold Wilson. It was the second national laboratory established by the British National Institute for Research in Nuclear Science, following the Rutherford High Energy Laboratory. It is operated by the Science and Technology Facilities Council, part of UK Research and Innovation. As of 2018, it employs around 300 staff, with Paul Vernon appointed as director in November 2020, taking over from Professor Susan Smith who had been director from 2012.
Swapan Chattopadhyay CorrFRSE is an Indian American physicist. Chattopadhyay completed his PhD from the University of California (Berkeley) in 1982.
A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams.
CHARISSA is a nuclear structure research collaboration originally conceived, initiated and partially built by Dr. William Rae of the University of Oxford (retired) and now run by the School of Physics and Astronomy at the University of Birmingham, UK. The other members of the collaboration are the University of Surrey with occasional contributions from LPC CAEN and Ruđer Bošković Institute, Zagreb. The collaboration is funded by the Science and Technology Facilities Council (STFC).
The academic structure of the Australian National University is organised as seven academic colleges which contain a network of inter-related faculties, research schools and centres. Each college is responsible for undergraduate and postgraduate education as well as research in its respective field.
The CERN Hadron Linacs are linear accelerators that accelerate beams of hadrons from a standstill to be used by the larger circular accelerators at the facility.