Accelerator Test Facility (New York)

Last updated

The Accelerator Test Facility (BNL-ATF) is a user facility within the Brookhaven National Laboratory (BNL) in New York, USA. Commencing operation in 1992, [1] the BNL-ATF carries out research and development on advanced accelerator physics and studies the interactions of high power electromagnetic radiation and high brightness electron beams, including plasma-acceleration and laser-acceleration of electrons.

Related Research Articles

DESY physics research institute in Hamburg, Germany

The Deutsches Elektronen-Synchrotron commonly referred to by the abbreviation DESY, is a national research center in Germany that operates particle accelerators used to investigate the structure of matter. It conducts a broad spectrum of inter-disciplinary scientific research in three main areas: particle and high energy physics; photon science; and the development, construction and operation of particle accelerators. Its name refers to its first project, an electron synchrotron. DESY is publicly financed by the Federal Republic of Germany, the States of Germany, and the German Research Foundation (DFG). DESY is a member of the Helmholtz Association and operates at sites in Hamburg and Zeuthen.

Brookhaven National Laboratory United States Department of Energy national laboratory

Brookhaven National Laboratory (BNL) is a United States Department of Energy national laboratory located in Upton, New York, on Long Island, and was formally established in 1947 at the site of Camp Upton, a former U.S. Army base. Its name stems from its location within the Town of Brookhaven, approximately 60 miles east of New York City.

SLAC National Accelerator Laboratory research center at Stanford University

SLAC National Accelerator Laboratory, originally named Stanford Linear Accelerator Center, is a United States Department of Energy National Laboratory operated by Stanford University under the programmatic direction of the U.S. Department of Energy Office of Science and located in Menlo Park, California. It is the site of the Stanford Linear Accelerator, a 3.2 kilometer linear accelerator constructed in 1966 and shut down in the 2000s, which could accelerate electrons to energies of 50 GeV.

Synchrotron Type of cyclic particle accelerator

A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The magnetic field which bends the particle beam into its closed path increases with time during the accelerating process, being synchronized to the increasing kinetic energy of the particles. The synchrotron is one of the first accelerator concepts to enable the construction of large-scale facilities, since bending, beam focusing and acceleration can be separated into different components. The most powerful modern particle accelerators use versions of the synchrotron design. The largest synchrotron-type accelerator, also the largest particle accelerator in the world, is the 27-kilometre-circumference (17 mi) Large Hadron Collider (LHC) near Geneva, Switzerland, built in 2008 by the European Organization for Nuclear Research (CERN). It can accelerate beams of protons to an energy of 6.5 teraelectronvolts (TeV).

A charged particle beam is a spatially localized group of electrically charged particles that have approximately the same position, kinetic energy, and direction. The kinetic energies of the particles are much larger than the energies of particles at ambient temperature. The high energy and directionality of charged particle beams make them useful for applications.

KEK organization

The High Energy Accelerator Research Organization, known as KEK, is a Japanese organization whose purpose is to operate the largest particle physics laboratory in Japan, situated in Tsukuba, Ibaraki prefecture. It was established in 1997. The term "KEK" is also used to refer to the laboratory itself, which employs approximately 695 employees. KEK's main function is to provide the particle accelerators and other infrastructure needed for high-energy physics, material science, structural biology, radiation science, computing science, nuclear transmutation and so on. Numerous experiments have been constructed at KEK by the internal and international collaborations that have made use of them. Makoto Kobayashi, emeritus professor at KEK, is known globally for his work on CP-violation, and was awarded the 2008 Nobel Prize in Physics.

Plasma acceleration is a technique for accelerating charged particles, such as electrons, positrons, and ions, using the electric field associated with electron plasma wave or other high-gradient plasma structures. The plasma acceleration structures are created either using ultra-short laser pulses or energetic particle beams that are matched to the plasma parameters. These techniques offer a way to build high performance particle accelerators of much smaller size than conventional devices. The basic concepts of plasma acceleration and its possibilities were originally conceived by Toshiki Tajima and Prof. John M. Dawson of UCLA in 1979. The initial experimental designs for a "wakefield" accelerator were conceived at UCLA by Prof. Chan Joshi et al. Current experimental devices show accelerating gradients several orders of magnitude better than current particle accelerators over very short distances, and about one order of magnitude better at the one meter scale.

AWAKE

The AWAKE facility at CERN is a proof-of-principle experiment, which investigates wakefield plasma acceleration using a proton bunch as a driver, a world-wide first. It aims to accelerate a low-energy witness bunch of electrons from 15-20 MeV to several GeV over a short distance (10m) by creating a high acceleration gradient of several GV/m. Particle accelerators currently in use, like CERN's LHC, use standard or superconductive RF-cavities for acceleration, but they are limited to an acceleration gradient in the order of 100 MV/m.

The Accelerator Test Facility (KEK-ATF) is a test accelerator in the KEK laboratory in Tsukuba, Japan. It is a test bed for production of the beam for the proposed International Linear Collider (ILC) linear electron-positron collider. Its main goal is to create the super-low-emittance beam which is needed for the ILC.

Electron scattering Deviation of electrons from their original trajectories

Electron scattering occurs when electrons are deviated from their original trajectory. This is due to the electrostatic forces within matter interaction or, if an external magnetic field is present, the electron may be deflected by the Lorentz force. This scattering typically happens with solids such as metals, semiconductors and insulators; and is a limiting factor in integrated circuits and transistors.

The National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL) in Upton, New York is a national user research facility funded by the U.S. Department of Energy (DOE). Built from 1978 through 1984, and officially shut down on September 30, 2014, the NSLS was considered a second-generation synchrotron.

The Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) is a facility at Los Alamos National Laboratory which is part of the Department of Energy's stockpile stewardship program. It uses two large X-ray machines to record three-dimensional interior images of materials. In most experiments, materials undergo hydrodynamic shock to simulate the implosion process in nuclear bombs and/or the effects of severe hydrodynamic stress. The tests are described as "full-scale mockups of the events that trigger the nuclear detonation". The powerful pulsed X-ray beams allow for an ultra-fast motion picture to be constructed showing the details of the process being studied in three dimensions. The tests are often compared with computer simulations to help improve the accuracy of the computer code. Such testing falls under the category of sub-critical testing.

Swapan Chattopadhyay Indian physicist

Swapan Chattopadhyay CorrFRSE is a particle accelerator physicist noted for his pioneering contributions of innovative concepts, techniques and developments in high energy particle colliders, coherent and incoherent light sources, ultrafast sciences in the femto- and atto- second regimes, superconducting linear accelerators and various applications of interaction of particle and light beams. He has directly contributed to the development of many accelerators around the world, e.g. the Super Proton-Antiproton Synchrotron at CERN, the Advanced Light Source at Berkeley, the asymmetric-energy electron-positron collider PEP-II at Stanford, the Continuous Electron Beam Accelerator facility (CEBAF) at Jefferson Lab and the Free-Electron Lasers at Jefferson and Daresbury Laboratories.

Particle accelerator device to propel charged particles to high speeds

A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams.

National Synchrotron Light Source II

The National Synchrotron Light Source II (NSLS-II) at Brookhaven National Laboratory (BNL) in Upton, New York is a national user research facility funded primarily by the U.S. Department of Energy's (DOE) Office of Science. NSLS-II is one of the world's most advanced synchrotron light sources, designed to produce x-rays 10,000 times brighter than BNL's original light source, the National Synchrotron Light Source (NSLS). NSLS-II supports basic and applied research in energy security, advanced materials synthesis and manufacturing, environment, and human health.

Laboratori Nazionali di Frascati nuclear physics research institute in Frascati, Italy

The INFN National Laboratory of Frascati (LNF) was founded in 1955 with the objective of furthering particle physics research, and more specifically to host the 1.1 GeV electrosynchrotron, the first accelerator ever built in Italy. The Laboratory later developed the first ever electron-positron collider: from the first prototype AdA, which demonstrated the feasibility, to the ring ADONE and later on to DAΦNE, still operative today (2016). LNF was also the proposed site of the cancelled particle accelerator SuperB.

CTF3 was an electron accelerator facility built at CERN with the aim of demonstrating the key concepts of the Compact Linear Collider accelerator. The facility consisted in two electron beamlines to mimic the functionalities of the CLIC Drive Beam and Main Beam.

An electron–ion collider (EIC) is a proposed type of particle accelerator collider designed to collide spin-polarized beams of electrons and ions, in order to study the properties of nuclear matter in detail via deep inelastic scattering. In 2015, the Department of Energy Nuclear Science Advisory Committee (NSAC) named the construction of an electron–ion collider one of the top priorities for the near future in nuclear physics in the United States. In 2020, The United States Department of Energy announced that an EIC will be built over the next ten years at Brookhaven National Laboratory in Upton, New York, at an estimated cost of $1.6 to $2.6 billion.

Accelerator Test Facility may refer to:

LEP Pre-Injector

The LEP Pre-Injector (LPI) was the initial source that provided electrons and positrons to CERN's accelerator complex for the Large Electron–Positron Collider (LEP) from 1989 until 2000.

References

  1. "Accelerator Test Facility (ATF)".