Look up adjoint in Wiktionary, the free dictionary. |
In mathematics, the term adjoint applies in several situations. Several of these share a similar formalism: if A is adjoint to B, then there is typically some formula of the type
Specifically, adjoint or adjunction may mean:
In mathematics, specifically in functional analysis, a C∗-algebra is a Banach algebra together with an involution satisfying the properties of the adjoint. A particular case is that of a complex algebra A of continuous linear operators on a complex Hilbert space with two additional properties:
In linear algebra, the trace of a square matrix A, denoted tr(A), is defined to be the sum of elements on the main diagonal of A.
In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized. This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces. In general, the spectral theorem identifies a class of linear operators that can be modeled by multiplication operators, which are as simple as one can hope to find. In more abstract language, the spectral theorem is a statement about commutative C*-algebras. See also spectral theory for a historical perspective.
Normal(s) or The Normal(s) may refer to:
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by AT.
In mathematics, the conjugate transpose of an m-by-n matrix with complex entries is the n-by-m matrix obtained from by taking the transpose and then taking the complex conjugate of each entry. It is often denoted as or .
In mathematics, and more specifically in abstract algebra, a *-algebra is a mathematical structure consisting of two involutive ringsR and A, where R is commutative and A has the structure of an associative algebra over R. Involutive algebras generalize the idea of a number system equipped with conjugation, for example the complex numbers and complex conjugation, matrices over the complex numbers and conjugate transpose, and linear operators over a Hilbert space and Hermitian adjoints. However, it may happen that an algebra admits no involution at all.
In mathematics, the adjoint representation of a Lie group G is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if G is , the Lie group of real n-by-n invertible matrices, then the adjoint representation is the group homomorphism that sends an invertible n-by-n matrix to an endomorphism of the vector space of all linear transformations of defined by: .
In mathematics, an element x of a *-algebra is self-adjoint if .
In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space together with a collection of operators on satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators.
In functional analysis, a branch of mathematics, an operator algebra is an algebra of continuous linear operators on a topological vector space, with the multiplication given by the composition of mappings.
In linear algebra, a square matrix with complex entries is said to be skew-Hermitian or anti-Hermitian if its conjugate transpose is the negative of the original matrix. That is, the matrix is skew-Hermitian if it satisfies the relation
In linear algebra and functional analysis, a projection is a linear transformation from a vector space to itself such that . That is, whenever is applied twice to any value, it gives the same result as if it were applied once (idempotent). It leaves its image unchanged. Though abstract, this definition of "projection" formalizes and generalizes the idea of graphical projection. One can also consider the effect of a projection on a geometrical object by examining the effect of the projection on points in the object.
In mathematics, specifically in functional analysis, each bounded linear operator on a complex Hilbert space has a corresponding Hermitian adjoint. Adjoints of operators generalize conjugate transposes of square matrices to (possibly) infinite-dimensional situations. If one thinks of operators on a complex Hilbert space as generalized complex numbers, then the adjoint of an operator plays the role of the complex conjugate of a complex number.
In mathematics, differential refers to infinitesimal differences or to the derivatives of functions. The term is used in various branches of mathematics such as calculus, differential geometry, algebraic geometry and algebraic topology.
In mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators, and consideration may be given to nonlinear operators. The study, which depends heavily on the topology of function spaces, is a branch of functional analysis.
In linear algebra, the transpose of a linear map between two vector spaces, defined over the same field, is an induced map between the dual spaces of the two vector spaces. The transpose or algebraic adjoint of a linear map is often used to study the original linear map. This concept is generalised by adjoint functors.
In mathematics, if G is a group and ρ is a linear representation of it on the vector space V, then the dual representationρ* is defined over the dual vector space V* as follows:
In mathematics, the Lie product formula, named for Sophus Lie (1875), but also widely called the Trotter product formula, named after Hale Trotter, states that for arbitrary n × n real or complex matrices A and B,