Aggregated indices randomization method

Last updated

In applied mathematics and decision making, the aggregated indices randomization method (AIRM) is a modification of a well-known aggregated indices method,[ citation needed ] targeting complex objects subjected to multi-criteria estimation under uncertainty. AIRM was first developed by the Russian naval applied mathematician Aleksey Krylov around 1908.

Contents

The main advantage of AIRM over other variants of aggregated indices methods is its ability to cope with poor-quality input information. It can use non-numeric (ordinal), non-exact (interval) and non-complete expert information to solve multi-criteria decision analysis (MCDM) problems. An exact and transparent mathematical foundation can assure the precision and fidelity of AIRM results.

Background

Ordinary aggregated indices method allows comprehensive estimation of complex (multi-attribute) objects’ quality. Examples of such complex objects (decision alternatives, variants of a choice, etc.) may be found in diverse areas of business, industry, science, etc. (e.g., large-scale technical systems, long-time projects, alternatives of a crucial financial/managerial decision, consumer goods/services, and so on). There is a wide diversity of qualities under evaluation too: efficiency, performance, productivity, safety, reliability, utility, etc.

The essence of the aggregated indices method consists in an aggregation (convolution, synthesizing, etc.) of some single indices (criteria) q(1),...,q(m), each single index being an estimation of a fixed quality of multiattribute objects under investigation, into one aggregated index (criterion) Q=Q(q(1),...,q(m)).

In other words, in the aggregated indices method single estimations of an object, each of them being made from a single (specific) “point of view” (single criterion), is synthesized by aggregative function Q=Q(q(1),...,q(m)) in one aggregated (general) object's estimation Q, which is made from the general “point of view” (general criterion).

Aggregated index Q value is determined not only by single indices’ values but varies depending on non-negative weight-coefficients w(1),...,w(m). Weight-coefficient (“weight”) w(i) is treated as a measure of relative significance of the corresponding single index q(i) for general estimation Q of the quality level.

Summary

It is well known that the most subtle and delicate stage in a variant of the aggregated indices method is the stage of weights estimation because of usual shortage of information about exact values of weight-coefficients. As a rule, we have only non-numerical (ordinal) information, which can be represented by a system of equalities and inequalities for weights, and/or non-exact (interval) information, which can be represented by a system of inequalities, which determine only intervals for the weight-coefficients possible values. Usually ordinal and/or interval information is incomplete (i.e., this information is not enough for one-valued estimation of all weight-coefficients). So, one can say that there is only non-numerical (ordinal), non-exact (interval), and non-complete information (NNN-information) I about weight-coefficient.

As information I about weights is incomplete, then weight-vector w=(w(1),...,w(m)) is ambiguously determined, i.e., this vector is determined with accuracy to within a set W(I) of all admissible (from the point of view of NNN-information I) weight-vectors. To model such uncertainty we shall address ourselves to the concept of Bayesian randomization . In accordance with the concept, an uncertain choice of a weight-vector from set W(I) is modeling by a random choice of an element of the set. Such randomization produces a random weight-vector W(I)=(W(1;I),...,W(m;I)), which is uniformly distributed on the set W(I).

Mathematical expectation of random weight-coefficient W(i;I) may be used as a numerical estimation of particular index (criterion) q(i) significance, exactness of this estimation being measured by standard deviation of the corresponding random variable. Since such estimations of single indices significance are determined on the base of NNN-information I, these estimations may be treated as a result of quantification of the non-numerical, inexact and incomplete information I.

An aggregative function Q(q(1),...,q(m)) depends on weight-coefficients. Therefore, random weight-vector (W(1;I),...,W(m;I)) induces randomization of an aggregated index Q, i.e., its transformation in the corresponding randomized aggregated index Q(I). The looked for average aggregated estimation of objects’ quality level may be identified now with mathematical expectation of corresponded random aggregated index Q(I). The measure of the aggregated estimation's exactness may be identified with the standard deviation of the correspondent random index.

Applications

History

The aggregated indices method was explicitly represented by colonel Aleksey Krylov (the well known Russian specialist in applied mathematics, member of the Russian Academy of Sciences, professor of Russian Navy Academy, etc., etc.) in his propositions (March, 1908) for selection of the best project of new Russian battleships (about 40 projects with about 150 initial attributes).

Different modifications of the Aggregated Indices Randomization Method (AIRM) are developing from 1972 year in Saint Petersburg State University and in Saint Petersburg Institute of Informatics of Russian Academy of Sciences (SPIIRAS).

Publications

See also

Related Research Articles

Measurement Process of assigning numbers to objects or events

Measurement is the quantification of attributes of an object or event, which can be used to compare with other objects or events. The scope and application of measurement are dependent on the context and discipline. In natural sciences and engineering, measurements do not apply to nominal properties of objects or events, which is consistent with the guidelines of the International vocabulary of metrology published by the International Bureau of Weights and Measures. However, in other fields such as statistics as well as the social and behavioural sciences, measurements can have multiple levels, which would include nominal, ordinal, interval and ratio scales.

Statistics Study of the collection, analysis, interpretation, and presentation of data

Statistics is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of surveys and experiments.

Tensor Algebraic object with geometric applications

In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Objects that tensors may map between include vectors and scalars, and even other tensors. There are many types of tensors, including scalars and vectors, dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product. Tensors are defined independent of any basis, although they are often referred to by their components in a basis related to a particular coordinate system.

Time series Sequence of data points over time

In mathematics, a time series is a series of data points indexed in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data. Examples of time series are heights of ocean tides, counts of sunspots, and the daily closing value of the Dow Jones Industrial Average.

Mathematical statistics

Mathematical statistics is the application of probability theory, a branch of mathematics, to statistics, as opposed to techniques for collecting statistical data. Specific mathematical techniques which are used for this include mathematical analysis, linear algebra, stochastic analysis, differential equations, and measure theory.

Multiple-criteria decision analysis

Multiple-criteria decision-making (MCDM) or multiple-criteria decision analysis (MCDA) is a sub-discipline of operations research that explicitly evaluates multiple conflicting criteria in decision making. Conflicting criteria are typical in evaluating options: cost or price is usually one of the main criteria, and some measure of quality is typically another criterion, easily in conflict with the cost. In purchasing a car, cost, comfort, safety, and fuel economy may be some of the main criteria we consider – it is unusual that the cheapest car is the most comfortable and the safest one. In portfolio management, managers are interested in getting high returns while simultaneously reducing risks; however, the stocks that have the potential of bringing high returns typically carry high risk of losing money. In a service industry, customer satisfaction and the cost of providing service are fundamental conflicting criteria.

A ranking is a relationship between a set of items such that, for any two items, the first is either "ranked higher than", "ranked lower than" or "ranked equal to" the second. In mathematics, this is known as a weak order or total preorder of objects. It is not necessarily a total order of objects because two different objects can have the same ranking. The rankings themselves are totally ordered. For example, materials are totally preordered by hardness, while degrees of hardness are totally ordered. If two items are the same in rank it is considered a tie.

In statistics, classification is the problem of identifying which of a set of categories (sub-populations) an observation, belongs to. Examples are assigning a given email to the "spam" or "non-spam" class, and assigning a diagnosis to a given patient based on observed characteristics of the patient.

The following is a glossary of terms used in the mathematical sciences statistics and probability.

In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a measured quantity. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation. By international agreement, this uncertainty has a probabilistic basis and reflects incomplete knowledge of the quantity value. It is a non-negative parameter.

In statistics, resampling is any of a variety of methods for doing one of the following:

  1. Estimating the precision of sample statistics by using subsets of available data (jackknifing) or drawing randomly with replacement from a set of data points (bootstrapping)
  2. Permutation tests are exact tests: Exchanging labels on data points when performing significance tests
  3. Validating models by using random subsets

In statistics, confirmatory factor analysis (CFA) is a special form of factor analysis, most commonly used in social research. It is used to test whether measures of a construct are consistent with a researcher's understanding of the nature of that construct. As such, the objective of confirmatory factor analysis is to test whether the data fit a hypothesized measurement model. This hypothesized model is based on theory and/or previous analytic research. CFA was first developed by Jöreskog (1969) and has built upon and replaced older methods of analyzing construct validity such as the MTMM Matrix as described in Campbell & Fiske (1959).

Decision-making software is software for computer applications that help individuals and organisations make choices and take decisions, typically by ranking, prioritizing or choosing from a number of options.

The decision-making paradox is a phenomenon related to decision-making and the quest for determining reliable decision-making methods. It was first described by Triantaphyllou, and has been recognized in the related literature as a fundamental paradox in multi-criteria decision analysis (MCDA), multi-criteria decision making (MCDM) and decision analysis since then.

In statistics, groups of individual data points may be classified as belonging to any of various statistical data types, e.g. categorical, real number, odd number(1,3,5) etc. The data type is a fundamental component of the semantic content of the variable, and controls which sorts of probability distributions can logically be used to describe the variable, the permissible operations on the variable, the type of regression analysis used to predict the variable, etc. The concept of data type is similar to the concept of level of measurement, but more specific: For example, count data require a different distribution than non-negative real-valued data require, but both fall under the same level of measurement.

In mathematical optimization, the problem of non-negative least squares (NNLS) is a type of constrained least squares problem where the coefficients are not allowed to become negative. That is, given a matrix A and a (column) vector of response variables y, the goal is to find

Outline of machine learning Overview of and topical guide to machine learning

The following outline is provided as an overview of and topical guide to machine learning. Machine learning is a subfield of soft computing within computer science that evolved from the study of pattern recognition and computational learning theory in artificial intelligence. In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". Machine learning explores the study and construction of algorithms that can learn from and make predictions on data. Such algorithms operate by building a model from an example training set of input observations in order to make data-driven predictions or decisions expressed as outputs, rather than following strictly static program instructions.

Risk score is the name given to a general practice in applied statistics, bio-statistics, econometrics and other related disciplines, of creating an easily calculated number that reflects the level of risk in the presence of some risk factors.