Airy beam

Last updated
Evolution of an Airy beam. Airy.gif
Evolution of an Airy beam.

An Airy beam, is a propagation invariant wave whose main intensity lobe propagates along a curved parabolic trajectory while being resilient to perturbations (self-healing).

Contents

Physical description

A cross section of an ideal Airy beam would reveal an area of principal intensity, with a series of adjacent, less luminous areas trailing off to infinity. In reality, the beam is truncated so as to have a finite composition.

As the beam propagates, it does not diffract, i.e., does not spread out. The Airy beam also has the characteristic of freely accelerating. As it propagates, it bends so as to form a parabolic arc.

History

The term "Airy beam" derives from the Airy integral, developed in the 1830s by Sir George Biddell Airy to explain optical caustics such as those appearing in a rainbow. [1]

The Airy waveform was first theorized in 1979 by M. V. Berry and Nándor L. Balázs. They demonstrated a nonspreading Airy wave packet solution to the Schrödinger equation. [2]

In 2007 researchers from the University of Central Florida (United States) were able to create and observe an Airy beam for the first time in both one- and two-dimensional configurations. The members of the team were Georgios Siviloglou, John Broky, Aristide Dogariu, and Demetrios Christodoulides. [3]

In one-dimension, the Airy beam is the only exactly shape-preserving accelerating solution to the free-particle Schrödinger equation (or 2D paraxial wave equation). However, in two dimensions (or 3D paraxial systems), two separable solutions are possible: two-dimensional Airy beams and accelerating parabolic beams. [4] Furthermore, it has been shown [5] that any function on the real line can be mapped to an accelerating beam with a different transverse shape.

In 2009 accelerating "Airy like" beams have been observed for the first time in material, notably a system with optical nonlinear behaviour, by a joint team of Pavia University and L'Aquila University (Italy); the members of the team were Jacopo Parravicini, Paolo Minzioni, Vittorio Degiorgio (from Pavia), and Eugenio DelRe (from L'Aquila). [6] Subsequently, this kind of beams has been investigated in 2011 and 2012 mainly by the teams of University of Central Florida. [7] [8] [9] Later, Airy beams have been demonstrated for other types of equations such as Helmholtz equation, Maxwell's equations. [10] [11] Acceleration can also take place along a radial instead of a cartesian coordinate, which is the case of circular-Airy abruptly autofocusing waves [12] and their extension to arbitrary (nonparabolic) caustics. [13] Acceleration is possible even for non-homogeneous periodic systems. [14] [15] With careful engineering of the input waveform, light can be made to accelerate along arbitrary trajectories in media that possess discrete [16] or continuous [17] periodicity. In 2018, scientists determined the cubic phase of Airy beams in a system analogous to surface gravity water-waves. Using an external hydrodynamic linear potential, they were also able to decelerate the Airy beam analog and halt the self-accelerating front of the Airy beam. [18]

Mathematical description

The potential free Schrödinger equation:

Has the following Airy accelerating solution: [19]

where

  • is the Airy function.
  • is the electric field envelope
  • represents a dimensionless transverse coordinate
  • is an arbitrary transverse scale
  • is a normalized propagation distance

This solution is non-diffracting in a parabolic accelerating frame. Actually one can perform a coordinate transformation and get an Airy equation. In the new coordinates the equation is solved by the Airy function.

Experimental observation

Georgios Sivilioglou, et al. successfully fabricated an Airy beam in 2007. A beam with a Gaussian distribution was modulated by a spatial light modulator to have an Airy distribution. The result was recorded by a CCD camera. [1] [3]

Modified Airy beams

Attenuation-compensation

Beams may encounter losses as they travel through materials which will cause attenuation of the beam intensity. A property common to non-diffracting (or propagation-invariant) beams, such as the Airy beam and Bessel beam, is the ability to control the longitudinal intensity envelope of the beam without significantly altering the other characteristics of the beam. This can be used to create Airy beams which grow in intensity at they travel and can be used to counteract losses, therefore maintaining a beam of constant intensity as it propagates. [20] [21] [22] In temporal domain, an analogous modified dispersion-free attenuation-compensating Airy-based ("rocket") pulse was previously proposed and demonstrated in, [23] designed to compensate media losses as it propagates through dispersive media.

Applications

Optical trapping and manipulation

Researchers at the University of St. Andrews have used Airy beams to manipulate small particles, moving them along curves and around corners. This may find use in fields such as microfluidic engineering and cell biology. [24] Significant theoretical works have been also undertaken by F.G. Mitri and his collaborators both in optics and acoustics, and related works can be found in these references: Airy acoustical–sheet spinner tweezers; Acoustics of finite asymmetric exotic beams: Examples of Airy and fractional Bessel beams; Pulling and spinning reversal of a sub-wavelength absorptive sphere in adjustable vector Airy light-sheets; Adjustable vector Airy light-sheet single optical tweezers: negative radiation forces on a subwavelength spheroid and spin torque reversal; Optical radiation force on a dielectric sphere of arbitrary size illuminated by a linearly polarized Airy light-sheet; Optical torque on an absorptive dielectric sphere of arbitrary size illuminated by a linearly-polarized Airy light-sheet; Circularly-polarized Airy light-sheet spinner tweezers and particle transport

(see also: Optical tweezers)

Imaging and microscopy

Researchers at the University of St. Andrews have further utilised Airy beams to make a large field of view (FOV) while maintaining high axial contrast in a light-sheet microscope. [25] [26] This technique has been adapted to use multi-photon excitation [27] and attenuation-compensated Airy beams [28] [29] to achieve imaging at greater depths within biological specimens.

Micro-machining

The accelerating and diffraction-free features of the Airy wavepacket have also been utilized by researchers at the University of Crete to produce two-dimensional, circular-Airy waves, termed abruptly-autofocusing beams. [12] These beams tend to focus in an abrupt fashion shortly before a target while maintaining a constant and low intensity profile along the propagated path and can be useful in laser microfabrication [30] or medical laser treatments.

See also

Notes and references

  1. 1 2 "Scientists make first observation of Airy optical beams"
  2. Berry, M. V.; Balázs, Nándor L. (1979). "Nonspreading wave packets". American Journal of Physics. 47 (3): 264–267. Bibcode:1979AmJPh..47..264B. doi:10.1119/1.11855.
  3. 1 2 Siviloglou, G. A.; Broky, J.; Dogariu, A.; Christodoulides, D. N. (2007). "Observation of Accelerating Airy Beams". Phys. Rev. Lett. 99 (21): 213901. Bibcode:2007PhRvL..99u3901S. doi:10.1103/PhysRevLett.99.213901. PMID   18233219.
  4. Bandres, M.A. (2008). "Accelerating parabolic beams" (PDF). Opt. Lett. 33 (15): 1678–1680. Bibcode:2008OptL...33.1678B. doi:10.1364/OL.33.001678. PMID   18670501.
  5. Bandres, M. A. (2009). "Accelerating beams". Opt. Lett. 34 (24): 3791–3793. Bibcode:2009OptL...34.3791B. doi:10.1364/OL.34.003791. PMID   20016615.
  6. Parravicini, Jacopo; Minzioni, Paolo; Degiorgio, Vittorio; DelRe, Eugenio (15 December 2009). "Observation of nonlinear Airy-like beam evolution in lithium niobate". Optics Letters. 34 (24): 3908–10. Bibcode:2009OptL...34.3908P. doi:10.1364/OL.34.003908. PMID   20016654.
  7. Kaminer, Ido; Segev, Mordechai; Christodoulides, Demetrios N. (30 April 2011). "Self-Accelerating Self-Trapped Optical Beams" (PDF). Physical Review Letters. 106 (21): 213903. Bibcode:2011PhRvL.106u3903K. doi:10.1103/PhysRevLett.106.213903. PMID   21699299.
  8. Kaminer, Ido; Nemirovsky, Jonathan; Segev, Mordechai (1 August 2012). "Self-accelerating self-trapped nonlinear beams of Maxwell's equations" (PDF). Optics Express. 20 (17): 18827–35. Bibcode:2012OExpr..2018827K. doi: 10.1364/OE.20.018827 . PMID   23038522.
  9. Bekenstein, Rivka; Segev, Mordechai (7 November 2011). "Self-accelerating optical beams in highly nonlocal nonlinear media" (PDF). Optics Express. 19 (24): 23706–15. Bibcode:2011OExpr..1923706B. doi: 10.1364/OE.19.023706 . PMID   22109397.
  10. Kaminer, Ido; Bekenstein, Rivka; Nemirovsky, Jonathan; Segev, Mordechai (2012). "Nondiffracting accelerating wave packets of Maxwell's equations" (PDF). Physical Review Letters. 108 (16): 163901. arXiv: 1201.0300 . Bibcode:2012PhRvL.108p3901K. doi:10.1103/PhysRevLett.108.163901. PMID   22680719.
  11. Courvoisier, F.; Mathis, A.; Froehly, L.; Giust, R.; Furfaro, L.; Lacourt, P. A.; Jacquot, M.; Dudley, J. M. (15 May 2012). "Sending femtosecond pulses in circles: highly nonparaxial accelerating beams". Optics Letters. 37 (10): 1736–8. arXiv: 1202.3318 . Bibcode:2012OptL...37.1736C. doi:10.1364/OL.37.001736. PMID   22627554. S2CID   16912633.
  12. 1 2 Efremidis, Nikolaos; Christodoulides, Demetrios (2010). "Abruptly autofocusing waves" (PDF). Optics Letters. 35 (23): 4045–7. Bibcode:2010OptL...35.4045E. doi:10.1364/OL.35.004045. PMID   21124607. S2CID   300877.
  13. Chremmos, Ioannis; Efremidis, Nikolaos; Christodoulides, Demetrios (2011). "Pre-engineered abruptly autofocusing beams". Optics Letters. 36 (10): 1890–2. Bibcode:2011OptL...36.1890C. CiteSeerX   10.1.1.714.588 . doi:10.1364/OL.36.001890. PMID   21593925.
  14. El-Ganainy, Ramy; Makris, Konstantinos G.; Miri, Mohammad Ali; Christodoulides, Demetrios N.; Chen, Zhigang (31 July 2011). "Discrete beam acceleration in uniform waveguide arrays". Physical Review A. 84 (2): 023842. Bibcode:2011PhRvA..84b3842E. doi:10.1103/PhysRevA.84.023842. S2CID   14179407.
  15. Kaminer, Ido; Nemirovsky, Jonathan; Makris, Konstantinos G.; Segev, Mordechai (3 April 2013). "Self-accelerating beams in photonic crystals". Optics Express. 21 (7): 8886–96. Bibcode:2013OExpr..21.8886K. doi: 10.1364/OE.21.008886 . PMID   23571979.
  16. Efremidis, Nikolaos; Chremmos, Ioannis (2012). "Caustic design in periodic lattices". Optics Letters. 37 (7): 1277–9. Bibcode:2012OptL...37.1277E. CiteSeerX   10.1.1.713.7055 . doi:10.1364/OL.37.001277. PMID   22466220.
  17. Chremmos, Ioannis; Efremidis, Nikolaos (2012). "Band-specific phase engineering for curving and focusing light in waveguide arrays" (PDF). Physical Review A. 85 (63830): 063830. Bibcode:2012PhRvA..85f3830C. doi:10.1103/PhysRevA.85.063830.
  18. G. G. Rozenman, A. Arie; W. P. Schleich, L. Shemer, M. Zimmerman, M. A. Efremov (2019). "Amplitude and Phase of Wave Packets in a Linear Potential". Physical Review Letters. 122 (12): 124302. Bibcode:2019PhRvL.122l4302R. doi:10.1103/PhysRevLett.122.124302. PMID   30978087. S2CID   111389900.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  19. "Observation of Accelerating Airy Beams"
  20. Schley, Ran; Kaminer, Ido; Greenfield, Elad; Bekenstein, Rivka; Lumer, Yaakov; Segev, Mordechai (2014). "Loss-proof self-accelerating beams and their use in non-paraxial manipulation of particles' trajectories". Nature Communications. 5: 5189. Bibcode:2014NatCo...5.5189S. doi: 10.1038/ncomms6189 . PMID   25355605.
  21. Preciado, Miguel A.; Dholakia, Kishan; Mazilu, Michael (2014-08-15). "Generation of attenuation-compensating Airy beams". Optics Letters. 39 (16): 4950–4953. Bibcode:2014OptL...39.4950P. doi:10.1364/ol.39.004950. hdl: 10023/7244 . PMID   25121916.
  22. "GitHub Matlab/Octave code: Compensating Airy beam for diffractive light delivery control".
  23. Preciado, Miguel A.; Sugden, Miguel (2012-12-01). "Proposal and design of Airy-based rocket pulses for invariant propagation in lossy dispersive media" (PDF). Optics Letters. 37 (23): 4970–4972. Bibcode:2012OptL...37.4970P. doi:10.1364/OL.37.004970. PMID   23202107.
  24. "Light throws a curve ball"
  25. Vettenburg, Tom; Dalgarno, Heather I C; Nylk, Jonathan; Coll-Lladó, Clara; Ferrier, David E K; Čižmár, Tomáš; Gunn-Moore, Frank J; Dholakia, Kishan (2014). "Light-sheet microscopy using an Airy beam" (PDF). Nature Methods. 11 (5): 541–544. doi:10.1038/nmeth.2922. hdl: 10023/5521 . PMID   24705473. S2CID   205422713.
  26. "Imaging turns a corner". Archived from the original on 2014-04-26. Retrieved 2014-04-26.
  27. Piksarv, Peeter; Marti, Dominik; Le, Tuan; Unterhuber, Angelika; Forbes, Lindsay H.; Andrews, Melissa R. Andrews; Stingl, Andreas; Drexler, Wolfgang; Andersen, Peter E. (2017). "Integrated single- and two-photon light sheet microscopy using accelerating beams". Scientific Reports. 7 (1): 1435. Bibcode:2017NatSR...7.1435P. doi:10.1038/s41598-017-01543-4. PMC   5431168 . PMID   28469191.
  28. Nylk, Jonathan; McCluskey, Kaley; Preciado, Miguel A.; Mazilu, Michael; Yang, Zhengyi; Gunn-Moore, Frank J.; Aggarwal, Sanya; Tello, Javier A.; Ferrier, David E. K. (2018-04-01). "Light-sheet microscopy with attenuation-compensated propagation-invariant beams". Science Advances. 4 (4): eaar4817. arXiv: 1708.02612 . Bibcode:2018SciA....4R4817N. doi:10.1126/sciadv.aar4817. PMC   5938225 . PMID   29740614.
  29. Veettikazhy, Madhu; Nylk, Jonathan; Gasparoli, Federico; Escobet-Montalbán, Adrià; Hansen, Anders Kragh; Marti, Dominik; Andersen, Peter Eskil; Dholakia, Kishan (2020-05-15). "Multi-photon attenuation-compensated light-sheet fluorescence microscopy". Scientific Reports. 10 (1): 8090. Bibcode:2020NatSR..10.8090V. doi: 10.1038/s41598-020-64891-8 . ISSN   2045-2322. PMC   7229186 . PMID   32415135.
  30. Papazoglou, Dimitrios; Efremidis, Nikolaos; Christodoulides, Demetrios; Tzortzakis, Stelios (2011). "Observation of abruptly autofocusing waves". Optics Letters. 36 (10): 1842–4. Bibcode:2011OptL...36.1842P. doi:10.1364/OL.36.001842. PMID   21593909. S2CID   9384164.

Related Research Articles

<span class="mw-page-title-main">Nonlinear optics</span> Branch of physics

Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in nonlinear media, that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typically observed only at very high light intensities (when the electric field of the light is >108 V/m and thus comparable to the atomic electric field of ~1011 V/m) such as those provided by lasers. Above the Schwinger limit, the vacuum itself is expected to become nonlinear. In nonlinear optics, the superposition principle no longer holds.

An optical waveguide is a physical structure that guides electromagnetic waves in the optical spectrum. Common types of optical waveguides include optical fiber waveguides, transparent dielectric waveguides made of plastic and glass, liquid light guides, and liquid waveguides.

Digital holography refers to the acquisition and processing of holograms with a digital sensor array, typically a CCD camera or a similar device. Image rendering, or reconstruction of object data is performed numerically from digitized interferograms. Digital holography offers a means of measuring optical phase data and typically delivers three-dimensional surface or optical thickness images. Several recording and processing schemes have been developed to assess optical wave characteristics such as amplitude, phase, and polarization state, which make digital holography a very powerful method for metrology applications .

<span class="mw-page-title-main">Bessel beam</span> Non-diffractive wave

A Bessel beam is a wave whose amplitude is described by a Bessel function of the first kind. Electromagnetic, acoustic, gravitational, and matter waves can all be in the form of Bessel beams. A true Bessel beam is non-diffractive. This means that as it propagates, it does not diffract and spread out; this is in contrast to the usual behavior of light, which spreads out after being focused down to a small spot. Bessel beams are also self-healing, meaning that the beam can be partially obstructed at one point, but will re-form at a point further down the beam axis.

<span class="mw-page-title-main">Self-focusing</span>

Self-focusing is a non-linear optical process induced by the change in refractive index of materials exposed to intense electromagnetic radiation. A medium whose refractive index increases with the electric field intensity acts as a focusing lens for an electromagnetic wave characterized by an initial transverse intensity gradient, as in a laser beam. The peak intensity of the self-focused region keeps increasing as the wave travels through the medium, until defocusing effects or medium damage interrupt this process. Self-focusing of light was discovered by Gurgen Askaryan.

<span class="mw-page-title-main">Radial polarization</span>

A beam of light has radial polarization if at every position in the beam the polarization vector points towards the center of the beam. In practice, an array of waveplates may be used to provide an approximation to a radially polarized beam. In this case the beam is divided into segments, and the average polarization vector of each segment is directed towards the beam centre.

<span class="mw-page-title-main">Subwavelength-diameter optical fibre</span>

A subwavelength-diameter optical fibre is an optical fibre whose diameter is less than the wavelength of the light being propagated through it. An SDF usually consists of long thick parts at both ends, transition regions (tapers) where the fibre diameter gradually decreases down to the subwavelength value, and a subwavelength-diameter waist, which is the main acting part. Due to such a strong geometrical confinement, the guided electromagnetic field in an SDF is restricted to a single mode called fundamental.

In physical optics or wave optics, a vector soliton is a solitary wave with multiple components coupled together that maintains its shape during propagation. Ordinary solitons maintain their shape but have effectively only one (scalar) polarization component, while vector solitons have two distinct polarization components. Among all the types of solitons, optical vector solitons draw the most attention due to their wide range of applications, particularly in generating ultrafast pulses and light control technology. Optical vector solitons can be classified into temporal vector solitons and spatial vector solitons. During the propagation of both temporal solitons and spatial solitons, despite being in a medium with birefringence, the orthogonal polarizations can copropagate as one unit without splitting due to the strong cross-phase modulation and coherent energy exchange between the two polarizations of the vector soliton which may induce intensity differences between these two polarizations. Thus vector solitons are no longer linearly polarized but rather elliptically polarized.

<span class="mw-page-title-main">Nematicon</span>

In optics, a nematicon is a spatial soliton in nematic liquid crystals (NLC). The name was invented in 2003 by G. Assanto. and used thereafter Nematicons are generated by a special type of optical nonlinearity present in NLC: the light induced reorientation of the molecular director. This nonlinearity arises from the fact that the molecular director tends to align along the electric field of light. Nematicons are easy to generate because the NLC dielectric medium exhibits the following properties:

<span class="mw-page-title-main">Peregrine soliton</span> Analytic solution of the nonlinear Schrödinger equation

The Peregrine soliton is an analytic solution of the nonlinear Schrödinger equation. This solution was proposed in 1983 by Howell Peregrine, researcher at the mathematics department of the University of Bristol.

<span class="mw-page-title-main">Angular momentum of light</span> Physical quantity carried in photons

The angular momentum of light is a vector quantity that expresses the amount of dynamical rotation present in the electromagnetic field of the light. While traveling approximately in a straight line, a beam of light can also be rotating around its own axis. This rotation, while not visible to the naked eye, can be revealed by the interaction of the light beam with matter.

<span class="mw-page-title-main">Optical rogue waves</span>

Optical rogue waves are rare pulses of light analogous to rogue or freak ocean waves. The term optical rogue waves was coined to describe rare pulses of broadband light arising during the process of supercontinuum generation—a noise-sensitive nonlinear process in which extremely broadband radiation is generated from a narrowband input waveform—in nonlinear optical fiber. In this context, optical rogue waves are characterized by an anomalous surplus in energy at particular wavelengths or an unexpected peak power. These anomalous events have been shown to follow heavy-tailed statistics, also known as L-shaped statistics, fat-tailed statistics, or extreme-value statistics. These probability distributions are characterized by long tails: large outliers occur rarely, yet much more frequently than expected from Gaussian statistics and intuition. Such distributions also describe the probabilities of freak ocean waves and various phenomena in both the man-made and natural worlds. Despite their infrequency, rare events wield significant influence in many systems. Aside from the statistical similarities, light waves traveling in optical fibers are known to obey the similar mathematics as water waves traveling in the open ocean, supporting the analogy between oceanic rogue waves and their optical counterparts. More generally, research has exposed a number of different analogies between extreme events in optics and hydrodynamic systems. A key practical difference is that most optical experiments can be done with a table-top apparatus, offer a high degree of experimental control, and allow data to be acquired extremely rapidly. Consequently, optical rogue waves are attractive for experimental and theoretical research and have become a highly studied phenomenon. The particulars of the analogy between extreme waves in optics and hydrodynamics may vary depending on the context, but the existence of rare events and extreme statistics in wave-related phenomena are common ground.

<span class="mw-page-title-main">Roberto Morandotti</span> Italian physicist

Roberto Morandotti is a physicist and full Professor, working in the Energy Materials Telecommunications Department of the Institut National de la Recherche Scientifique. The work of his team includes the areas of integrated and quantum photonics, nonlinear and singular optics, as well as terahertz photonics.

In physics, non-Hermitian quantum mechanics, describes quantum mechanical systems where Hamiltonians are not Hermitian.

<span class="mw-page-title-main">Yoav Shechtman</span> Israeli physicist

Prof. Yoav Shechtman is an Israeli physicist. He is currently a Harrington Faculty Fellow at the The University of Texas after previously heading the Nano-Bio-Optics lab at the Technion – Israel Institute of Technology. Yoav Shechtman is the son of Nobel Prize laureate Dan Shechtman.

A Spacetime wave packet is a spatial-temporal light structure with a one-to-one correlation between spatial and temporal frequencies. In particular, their group velocity in free space can be controlled arbitrarily from sub-luminal to super-luminal speeds without needing to control the dispersion of the medium it is propagating within. Their behavior under refraction does not follow the normal expectations given by Snell's law. Monochromatic Gaussian beam is shown to be transformed into spacetime wave packets under Lorentz transformation, thus any monochromatic Gaussian beam observed in a reference frame moving at relativistic velocity appears as spacetime wave packets.

Alexey Okulov is a Soviet and Russian physicist, the author of pioneering works in laser physics and theoretical physics.

<span class="mw-page-title-main">Baruch Fischer</span> Israeli professor of electro-optics

Baruch Fischer is an Israeli optical physicist and Professor Emeritus in the Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering of the Technion, where he was the Max Knoll Chair in Electro-Optics and Electronics.

Demetrios N. Christodoulides is a United States physicist known for his work in quantum optics and nonlinear optics and photonics. He is currently the Steven and Kathryn Sample Chair in Engineering, and Professor of Electrical and Computer Engineering at the University of Southern California.

Mordechai "Moti" Segev is an Israeli physicist at the Technion who is known for his work on lasers, nonlinear optics, solitons, and quantum optics.