Albion process

Last updated

The Albion process is an atmospheric leaching process for processing zinc concentrate, refractory copper and refractory gold. [1] The process is important because it is the most cost-effective method currently in use for extracting both the zinc and lead from concentrates that contain high lead levels (7% or greater). Zinc and lead often occur together and large remaining zinc deposits contain levels of lead that exceed what can be economically extracted through other techniques. The Albion process is not sensitive to the concentration grade and gives favorable recovery with both low grade and dirty concentrates. Environmental impact is also claimed [2] to be mitigated using this technology because in contrast to other methods, sulfur dioxide is not emitted and less energy is consumed over all.

Zinc Chemical element with atomic number 30

Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a blue-silvery appearance when oxidation is removed. It is the first element in group 12 of the periodic table. In some respects zinc is chemically similar to magnesium: both elements exhibit only one normal oxidation state (+2), and the Zn2+ and Mg2+ ions are of similar size. Zinc is the 24th most abundant element in Earth's crust and has five stable isotopes. The most common zinc ore is sphalerite (zinc blende), a zinc sulfide mineral. The largest workable lodes are in Australia, Asia, and the United States. Zinc is refined by froth flotation of the ore, roasting, and final extraction using electricity (electrowinning).

Ore concentrate, dressed ore or simply concentrate is the product generally produced by metal ore mines. The raw ore is usually ground finely in various comminution operations and gangue (waste) is removed, thus concentrating the metal component. The concentrate is then transported to various physical or chemical processes called hydrometallurgy, pyrometallurgy smelters, and electrometallurgy where it is used to produce useful metals.

Refractory

A refractory material or refractory is a heat-resistant material: that is, a mineral that is resistant to decomposition by heat, pressure, or chemical attack, most commonly applied to a mineral that retains strength and form at high temperatures..

Contents

History

Development of the Albion process started during the early nineties led by Mount Isa Mines. It was first patented in 1993. [3] Several pilot plant projects were conducted in 1994 and 1995 which tested the feasibility of using the technology to process high arsenic gold and copper ore. [3]

Mount Isa Mines mine in Australia

Mount Isa Mines Limited ("MIM") operates the Mount Isa copper, lead, zinc and silver mines near Mount Isa, Queensland, Australia as part of the Glencore group of companies. For a brief period in 1980, MIM was Australia's largest company. It has pioneered several significant mining industry innovations, including the Isa Process copper refining technology, the Isasmelt smelting technology, and the IsaMill fine grinding technology, and it also commercialized the Jameson Cell column flotation technology.

The Albion Process has been successfully installed in seven projects globally:

Process

The ore concentrate is first introduced into an IsaMill. This comminution step places a high degree of strain on the mineral lattice and causes an increase in the number of grain boundary fractures and lattice defects of several orders of magnitude. The increase in the number of defects within the mineral lattice "activates" the mineral, facilitating leaching. The rate of leaching is also enhanced, due to the increase in the mineral surface area.

The IsaMill is an energy-efficient mineral industry grinding mill that was jointly developed in the 1990s by Mount Isa Mines Limited and Netzsch Feinmahltechnik ("Netzsch"), a German manufacturer of bead mills. The IsaMill is primarily known for its ultrafine grinding applications in the mining industry, but is also being used as a more efficient means of coarse grinding. By the end of 2008, over 70% of the IsaMill’s installed capacity was for conventional regrinding or mainstream grinding applications, with target product sizes ranging from 25 to 60 µm.

Comminution is the reduction of solid materials from one average particle size to a smaller average particle size, by crushing, grinding, cutting, vibrating, or other processes. In geology, it occurs naturally during faulting in the upper part of the Earth's crust. In industry, it is an important unit operation in mineral processing, ceramics, electronics, and other fields, accomplished with many types of mill. In dentistry, it is the result of mastication of food. In general medicine, it is one of the most traumatic forms of bone fracture.

Crystal structure Ordered arrangement of atoms, ions, or molecules in a crystalline material

In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric patterns that repeat along the principal directions of three-dimensional space in matter.

The oxidative leaching stage is carried out in agitated tanks operating at atmospheric pressure. Oxygen is introduced to the leach slurry to assist the oxidation. Leaching is autothermal, not requiring any external heat. Temperature is controlled by the rate of addition of oxygen, and by the leach slurry density.

Chemistry

The general reaction for the leaching process is:

[6]

Related Research Articles

Bioleaching is the extraction of metals from their ores through the use of living organisms. This is much cleaner than the traditional heap leaching using cyanide. Bioleaching is one of several applications within biohydrometallurgy and several methods are used to recover copper, zinc, lead, arsenic, antimony, nickel, molybdenum, gold, silver, and cobalt.

Chalcopyrite sulfide mineral

Chalcopyrite ( KAL-ko-PY-ryt) is a copper iron sulfide mineral that crystallizes in the tetragonal system. It has the chemical formula CuFeS2. It has a brassy to golden yellow color and a hardness of 3.5 to 4 on the Mohs scale. Its streak is diagnostic as green tinged black.

Gold cyanidation is a hydrometallurgical technique for extracting gold from low-grade ore by converting the gold to a water-soluble coordination complex. It is the most commonly used leaching process for gold extraction.

Copper extraction Process of extracting copper from the ground

Copper extraction refers to the methods used to obtain copper from its ores. The conversion of copper consists of a series of physical and electrochemical processes. Methods have evolved and vary with country depending on the ore source, local environmental regulations, and other factors.

Gold extraction

Gold extraction refers to the processes required to extract gold from its ores. This may require a combination of comminution, mineral processing, hydrometallurgical, and pyrometallurgical processes to be performed on the ore.

Ore genesis How the various types of mineral deposits form within the Earths crust.

Various theories of ore genesis explain how the various types of mineral deposits form within the Earth's crust. Ore-genesis theories vary depending on the mineral or commodity examined.

In ore deposit geology, supergene processes or enrichment are those that occur relatively near the surface as opposed to deep hypogene processes. Supergene processes include the predominance of meteoric water circulation with concomitant oxidation and chemical weathering. The descending meteoric waters oxidize the primary (hypogene) sulfide ore minerals and redistribute the metallic ore elements. Supergene enrichment occurs at the base of the oxidized portion of an ore deposit. Metals that have been leached from the oxidized ore are carried downward by percolating groundwater, and react with hypogene sulfides at the supergene-hypogene boundary. The reaction produces secondary sulfides with metal contents higher than those of the primary ore. This is particularly noted in copper ore deposits where the copper sulfide minerals chalcocite Cu2S, covellite CuS, digenite Cu1.8S, and djurleite Cu31S16 are deposited by the descending surface waters.

Biomining

Biomining is a technique of extracting metals from ores and other solid materials typically using prokaryotes or fungi. These organisms secrete different organic compounds that chelate metals from the environment and bring it back to the cell where they are typically used to coordinate electrons. It was discovered in the mid 1900s that microorganisms use metals in the cell. Some microbes can use stable metals such as iron, copper, zinc, and gold as well as unstable atoms such as uranium and thorium. Companies can now grow large chemostats of microbes that are leaching metals from their media, these vats of culture can then be transformed into many marketable metal compounds. Biomining is an environmentally friendly technique compared to typical mining. Mining releases many pollutants while the only chemicals released from biomining is any metabolites or gasses that the bacteria secrete. The same concept can be used for bioremediation models. Bacteria can be inoculated into environments contaminated with metals, oils, or other toxic compounds. The bacteria can clean the environment by absorbing these toxic compounds to create energy in the cell. Microbes can achieve things at a chemical level that could never be done by humans. Bacteria can mine for metals, clean oil spills, purify gold, and use radioactive elements for energy.

In situ leach

In-situ leaching (ISL), also called in-situ recovery (ISR) or solution mining, is a mining process used to recover minerals such as copper and uranium through boreholes drilled into a deposit, in situ. In situ leach works by artificially dissolving minerals occurring naturally in a solid state. For recovery of material occurring naturally in solution, see: Brine mining.

Zinc smelting is the process of converting zinc concentrates into pure zinc. Zinc smelting has historically been more difficult than the smelting of other metals, e.g. iron, because in contrast, zinc has a low boiling point. At temperatures typically used for smelting metals, zinc is a gas that will escape from a furnace with the flue gas and be lost, unless specific measures are taken to prevent it.

Flash smelting smelting process for sulfur-containing ores

Flash smelting is a smelting process for sulfur-containing ores including chalcopyrite. The process was developed by Outokumpu in Finland and first applied at the Harjavalta plant in 1949 for smelting copper ore. It has also been adapted for nickel and lead production.

Centres of mining operations include Konkola and Kitwe.

Mopani Copper Mines PLC ("Mopani") is a Zambian registered company owned by Carlisa Investments Corporation and ZCCM-IH (10%). Minority shareholders are spread throughout the world, in various locations.

ISASMELT smelting process

The ISASMELT process is an energy-efficient smelting process that was jointly developed from the 1970s to the 1990s by Mount Isa Mines Limited and the Australian government’s Commonwealth Scientific and Industrial Research Organisation ("CSIRO"). It has relatively low capital and operating costs for a smelting process.

Mining in North Korea is important to the country's economy. North Korea is naturally abundant in metals such as magnesite, zinc, tungsten, and iron; with magnesite resources of 6 billion tonnes, particularly in the Hamgyeong-do and Jagang-do provinces. However, often these cannot be mined due to the acute shortage of electricity in the country, as well as the lack of proper tools to mine these materials and an antiquated industrial base. Coal, iron ore, limestone, and magnesite deposits are larger than other mineral commodities. Mining joint ventures with other countries include China, Canada, Egypt, and South Korea.

Jameson cell Machinery for processing minerals

The Jameson Cell is a high-intensity froth flotation cell that was invented by Laureate Professor Graeme Jameson of the University of Newcastle (Australia) and developed in conjunction with Mount Isa Mines Limited.

Bottom-blown oxygen converter

The Bottom-blown Oxygen Converter or BBOC is a smelting furnace developed by the staff at Britannia Refined Metals Limited (“BRM”), a British subsidiary of MIM Holdings Limited. The furnace is currently marketed by Glencore Technology. It is a sealed, flat-bottomed furnace mounted on a tilting frame that is used in the recovery of precious metals. A key feature is the use of a shrouded lance to inject oxygen through the bottom of the furnace, directly into the precious metals contained in the furnace, to oxidize base metals or other impurities as part of their removal as slag.

References

  1. Pease, Joe (August 2005), "Complex leaching becomes much simpler" (PDF), Australian Mining, pp. 26–32, archived from the original (PDF) on 12 September 2009, retrieved 6 January 2010
  2. "Albion Process Progress", Mining Journal, p. 324, 8 November 2002, archived from the original on 14 July 2011
  3. 1 2 "Archived copy". Archived from the original on 2009-09-12. Retrieved 2010-01-06.CS1 maint: Archived copy as title (link)
  4. "GPM Gold Project in Armenia" (PDF). Retrieved 28 February 2019.
  5. "First Chalcopyrite Copper Concentrate Leaching using Albion Process Technology" (PDF). Retrieved 28 February 2019.
  6. "Archived copy". Archived from the original on 2009-09-30. Retrieved 2010-01-06.CS1 maint: Archived copy as title (link)