Allofeeding

Last updated
Dusky woodswallow (Artamus cyanopterus) parent feeding a wasp to chicks Artamus cyanopterus Mortimer.jpg
Dusky woodswallow (Artamus cyanopterus) parent feeding a wasp to chicks

Allofeeding is a type of food sharing behaviour observed in cooperatively breeding species of birds. Allofeeding refers to a parent, sibling or unrelated adult bird feeding altricial hatchlings, which are dependent on parental care for their survival. [1] Allofeeding also refers to food sharing between adults of the same species. [2] Allofeeding can occur between mates during mating rituals, courtship, egg laying or incubation, between peers of the same species, or as a form of parental care. [3] [4]

Contents

Allofeeding evolved for different reasons in different species of birds. While sagebrush Brewer's sparrows allofeed to reduce predation during incubation, Sichuan jays allofeed to increase a female's nutritional level prior to egg laying, and chinstrap penguins allofeed to strengthen the bond between the pair during chick guarding. [4] [5] [6]

While parental allofeeding is a common form of parental care among many species of birds, the practice is not inherently restricted to biological parents and their young, and is often done for reasons unrelated to the well-being of the chicks. Arabian babblers, for instance, peer allofeed in an attempt at increasing their social rank, whereas the king penguin considers those 'non-breeders' who allofeed chicks to be altruistic and highly revered. And the far more practical barn owl, of course, peer allofeeds merely to reduce sibling rivalry/competition during meal times. [7] [8]

Although many species of birds exhibit allofeeding, there are some species that do not perform allofeeding, such as the Siberian jay. [5]

Allofeeding between mates

Many species of migratory songbirds display allofeeding during the incubation period. [4] During the incubation period, a male songbird will feed its mate through beak-to-beak interaction, while she sits on the eggs. [4] This allofeeding behaviour is suggested to be adaptive because the male is indirectly investing in its offspring. [4] The male uses its energy to forage and retrieve food, and to feed the female. [4] This behaviour of the male reduces the nutritional stress of the female, because it reduces the amount of time the female spends foraging. [4] In addition, the allofeeding behaviour decreases the number of times a female has to leave the nest, which in turn extends the incubation period and reduces the risk of the nest being detected by a predator. [4] Overall, allofeeding behaviour contributes to increased fitness and is therefore considered advantageous. [4] However, Nolan (1958) theorizes that allofeeding is non-adaptive and is derived from anticipatory parental care. [4]

Allofeeding during the incubation period can also transpire through both the male and the female interchangeably feeding each other via beak-to-beak interactions, while a mate receiving the food incubates the eggs. [4] Once feeding is completed, the recipient now becomes the feeder and the mate that was just foraging incubates the eggs. For example, sagebrush Brewer's sparrows (Spizella breweri breweri) allofeed in this manner. [4] A recent study by Halley et al., 2015, examined allofeeding in twenty-four nests of sagebrush Brewer's sparrows. [4] This study revealed that allofeeding occurred at low frequencies (55%) in nests with biparental incubation and no allofeeding occurred in uniparental nests. [4] This study suggests that allofeeding is an intraspecific signal required to maintain social bonds between mates, in addition to increasing the nutrition levels of females and concealment of the nest. [4] Furthermore, the study found that incubation sessions per hour were higher in biparental nests with allofeeding than in biparental nests without allofeeding. [4] These findings indicate that allofeeding is beneficial because it reduces the risk of predation from visually oriented predators through increased nest concealment, which can maximize the fitness of males while increasing the fitness of females. [4]

There have been many documented observations of allofeeding between mates (mate allofeeding). [6] However, in penguins allofeeding between mates is rare. [6] In 2010, allofeeding was reported for chinstrap penguins (P. antarctica) during the period of chick guarding. [6] The researchers witnessed a male feeding a female, which had a large chick in its nest. [6] The behaviour was engaged by the female frequently pecking the side of the male's bill to stimulate the male to regurgitate its food. [6] This resulted in the male regurgitating its food into the female's open mouth. This allofeeding behaviour was identical to the manner in which a chick begs its parent for food. [6] Notably, during this behaviour the female kept the attention of the male when the chick tried to gain the male's attention. [6] It is proposed that mate allofeeding in chinstrap penguins was performed to strengthen the bond between the pair. [6]

Allofeeding between mates can also occur during courtship. [6] Courtship allofeeding occurs in half of bird subfamilies and mainly appears in monogamous bird species. [6] Courtship allofeeding is hypothesized to strengthen the bond between pairs or increase a female's nutritional level before laying eggs. [6] For example, in the Sichuan jay (P. internigrans), females are fed by only one male during courtship. [5] It is suggested that allofeeding the female during courtship increases a female's nutritional level before egg laying. [5] This behaviour was also recorded in Canada jays (P. canadensis). [5]

Allofeeding and parental care

A parent feeding a non-biological chick via bill-to-bill interactions is a form of allofeeding. [9] [10] Parental allofeeding occurs in all altricial species of birds to ensure proper growth, development, and to prevent starvation of their offspring. [11]

Aptenodytes patagonicus

Emperor penguin (Aptenodytes patagonicus) feeding its offspring Emperor-feeding hg.jpg
Emperor penguin (Aptenodytes patagonicus) feeding its offspring
Female house sparrow feeding young House sparrow feeding behaviour.jpg
Female house sparrow feeding young

This form of allofeeding has been shown to be a form of parental care in some species, such as in king penguins (A. patagonicus). [9] King penguins are pelagic seabirds. [9] King penguin chicks form dense groups called crèches during winter for social thermoregulation when food availability is low. [9] [10] The formation of crèches results from the parents interchangeably leaving starving chicks to gather food from the sea. [9] [10] A study by Lecomte et al., 2015 examined the allofeeding behaviour in king penguins, in which they marked the white underbellies of 74 non-breeding adults and 103 breeding pairs with a unique dark colouring called dye-mark code of Nyanzol-D. [9] Lecomte et al. (2015) found 22% of the marked adults feed 65% of the chicks in crèches, revealing that allofeeding behaviour was most common during the breeding season. [9] Lecomte et al. (2015) also identified that most of the 22% of adult king penguins demonstrating allofeeding behaviour were unable to successfully breed along with few breeders performing the behaviour. [9] The allofeeding behaviour resulted in more feedings for chicks, [9] which is consistent with study by Pierre et al. (1994) that showed that allofeeding in penguins increases the chick growth rate from 35g/day to 190g/day. [10] From these results, Lecomte et al. (2015) concluded that allofeeding increased the survival rate of chicks in crèches. [9] [10] The results imply that parental allofeeding in king penguins is an altruistic behaviour, where allofeeding benefits the young at a cost to the non-biological parent. [9] Notably, no direct benefits to the non-biological parents have been described. [9] The cost of allofeeding non-biological chicks resulted in no detrimental effects to the fitness of the alloparent, because the cost of allofeeding is low (several grams) when compared to the nutritional costs of an adult king penguin, which is several kilograms. [9] However, it is suggested that allofeeding many chicks may cost each chick lost meals that can cause negative effects on the fitness of allofed chicks. [9] In addition, allofeeding decreases when non-biological parents had offspring. [9]

Pygoscelis antarcticus

The chinstrap penguin (P. antarcticus) is another species of penguin that displays parental allofeeding. [6] Allofeeding in the chinstrap penguin has been observed between the female and its offspring. [6] Similar to mate allofeeding in this species, the offspring of a female will peck the side of the female's bill to signal the female to regurgitate its food into the chick's open mouth. [6]

Perisoreus internigrans

In Sichuan jays (P. internigrans), females are not the only sex that participates in the allofeeding of their offspring. [5] During their first week of life, the chicks are only fed by the male. [12] The male forages and stores food in a pouch within its throat. At the nest, the male regurgitates the semi-digested food from its pouch into the mouths of its chicks. [12] After the first week, the male continues to feed the chicks while the female begins feeding the chicks. [5] The female uses the same method as the male. [12]

Peer allofeeding

There have been many reported cases of allofeeding between siblings in several species of birds. [7]

Turdoides sqamiceps

For example, the Arabian babblers (T. sqamiceps) are a territorial, desert-inhabiting species of bird that participate in cooperative breeding. [7] In this species, non-breeders show numerous types of cooperative behaviour, including allofeeding. [7] Adult and immature babblers, as well as previous and newly fledged babblers, will frequently engage in allofeeding behaviour. [7]

Carlisle et al. (1986) revealed that Arabian babblers participate in peer allofeeding in order to increase social rank, which increases fitness. [7] This allofeeding behaviour is supported by the Zahavi's hypothesis. [7] An individual (a dominant babbler) can increase in social rank by allofeeding a subordinate babbler. [7] On the contrary, an individual (a subordinate babbler) can decrease in social rank when they are allofed by a dominant babbler. [7] Subordinate babblers have been observed refusing to be allofed by a dominant babbler. [7] The refusal resulted in the dominant babbler becoming aggressive with the subordinate – hitting or chasing the subordinate. [7] Dominate babblers also showed the same aggressive behaviours when a subordinate tried to allofeed it. [7]

Tyto alba

Another species that exhibits peer allofeeding is the barn owl (T. alba). [8] Barn owl nest siblings establish a hierarchy for the sharing of food resources via vocal negotiations. [8] It is suggested that barn owl nest siblings show peer allofeeding to reduce sibling competition in the food sharing hierarchy. [8] Peer allofeeding observed in 60 nestling pairs revealed that the behaviour occurs by a donor sibling placing the food item on the ground in front of the receiver sibling, which transfers the food item to its bill using its talons. [8] Alternatively, the donor sibling uses its bill to place the food item in the bill of the receiver sibling. [8] As well, peer allofeeding behaviour in barn owl siblings is proposed to increase the inclusive fitness of the peer performing the allofeeding. [8]

Intraspecific allofeeding

Perisoreus internigrans

Canada jays (Perisoreus canadensis) feeding offspring at the nest Perisoreus canadensis feeding at nest.jpg
Canada jays (Perisoreus canadensis) feeding offspring at the nest

Intraspecific allofeeding in Sichuan jays (P. internigrans) is performed during the nestling and fledging period by non-breeders. [5] One to three non-breeders support a nesting breeding pair by feeding the chicks, regurgitating the food from their throat pouches. [5] [12] In 2009, Jing et al. determined that two non-breeders contributed to 44% of feedings in the nest of two Sichuan jays. [5] Jing et al. (2009) suggest that allofeeding behaviour contributes to increased nest survival. [5]

In Sichuan jays, allofeeding is hypothesized to be evolutionary selected. [5] In this species, two to three non-breeders will allofeed the young of a breeding pair. [5] The large body mass (21% heavier than Siberian jays) of the Sichuan jays, and the presence of more than one non-breeder, allows one non-breeder to ward off a predator while another non-breeder protects the young from additional predators. [5] Both the large body mass of the non-breeders and the presence of multiple non-breeders reduce the risk of injury or death when predators are encountered. [5] This reveals that the benefits of allofeeding the young outweigh the cost of injury or death of the non-breeder and/or chick when more than one non-breeder is present. [5] Peer allofeeding has also been observed in the Canada jay (P. canadensis). [5] In the gray jay, non-breeders allofeed the young after fledging. [5]

Not all species of jays allofeed their young, such as the Siberian jay (P. infaustus). [5] In Siberian jays, non-breeders do not allofeed the chicks of a breeding pair. [5] It is predicted that Siberian jays do not display allofeeding because the cost of predation is too high. [5] Siberian jays are continuously threatened by a more dangerous predators, the Eurasian sparrowhawk and northern goshawk, than Canada jays, which are threatened by the Eurasian red squirrel. [5] One non-breeder per breeding pair and the small size (21% less body mass than the Sichuan jays) of the Siberian jays, in combination with continuous risk of predation, reveals that the non-breeding Siberian jays are unable to confront predators and protect the nest simultaneously. [5] This indicates that the cost of allofeeding the young is more costly to the non-breeder when one non-breeder is present, because an encounter with a predator increases the risk of injury and death of both the young and the non-breeder. [5] This reveals that the benefit of allofeeding the young does not exceed the cost of injury or death of non-breeder and/or young. [5] This is consistent with the predator-avoidance hypothesis, suggesting that the cost of allofeeding in the Siberian jays prevents allofeeding from being evolutionary selected. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Killdeer</span> Shorebird found in the Americas

The killdeer is a large plover found in the Americas. It gets its name from its shrill, two-syllable call, which is often heard. It was described and given its current scientific name in 1758 by Carl Linnaeus in the 10th edition of his Systema Naturae. Three subspecies are described. Its upperparts are mostly brown with rufous fringes, the head has patches of white and black, and two black bands cross the breast. The belly and the rest of the breast are white. The nominate subspecies breeds from southeastern Alaska and southern Canada to Mexico. It is seen year-round in the southern half of its breeding range; the subspecies C. v. ternominatus is resident in the West Indies, and C. v. peruvianus inhabits Peru and surrounding South American countries throughout the year. North American breeders winter from their resident range south to Central America, the West Indies, and the northernmost portions of South America. Despite their name, they are not known for killing deer.

<span class="mw-page-title-main">Australo-Papuan babbler</span> Family of birds

The Pomatostomidae are small to medium-sized birds endemic to Australia-New Guinea. For many years, the Australo-Papuan babblers were classified, rather uncertainly, with the Old World babblers (Timaliidae), on the grounds of similar appearance and habits. More recent research, however, indicates that they are too basal to belong the Passerida – let alone the Sylvioidea where the Old World babblers are placed – and they are now classed as a separate family close to the Orthonychidae (logrunners). Five species in two genus are currently recognised, although the red-breasted subspecies rubeculus of the grey-crowned babbler may prove to be a separate species.

<span class="mw-page-title-main">American coot</span> Species of bird

The American coot, also known as a mud hen or pouldeau, is a bird of the family Rallidae. Though commonly mistaken for ducks, American coots are only distantly related to ducks, belonging to a separate order. Unlike the webbed feet of ducks, coots have broad, lobed scales on their lower legs and toes that fold back with each step to facilitate walking on dry land. Coots live near water, typically inhabiting wetlands and open water bodies in North America. Groups of coots are called covers or rafts. The oldest known coot lived to be 22 years old.

<span class="mw-page-title-main">European pied flycatcher</span> Species of bird

The European pied flycatcher is a small passerine bird in the Old World flycatcher family. One of the four species of Western Palearctic black-and-white flycatchers, it hybridizes to a limited extent with the collared flycatcher. It breeds in most of Europe and across the Western Palearctic. It is migratory, wintering mainly in tropical Africa. It usually builds its nests in holes on oak trees. This species practices polygyny, usually bigamy, with the male travelling large distances to acquire a second mate. The male will mate with the secondary female and then return to the primary female in order to help with aspects of child rearing, such as feeding.

<span class="mw-page-title-main">Northern mockingbird</span> Species of bird

The northern mockingbird is a mockingbird commonly found in North America, of the family Mimidae. The species is also found in some parts of the Caribbean, as well as on the Hawaiian Islands. It is typically a permanent resident across much of its range, but northern mockingbirds may move farther south during inclement weather or prior to the onset of winter. The northern mockingbird has gray to brown upper feathers and a paler belly. Its tail and wings have white patches which are visible in flight.

<span class="mw-page-title-main">Blue-headed vireo</span> Species of bird

The blue-headed vireo is a migrating song bird found in North and Central America. There are currently two recognized subspecies that belong to the blue-headed vireo. It has a range that extends across Canada and the eastern coast of the United-States, Mexico and some of Central America. It prefers large temperate forests with a mix of evergreen trees and deciduous under growth.

<span class="mw-page-title-main">Snares penguin</span> Species of bird

The Snares penguin, also known as the Snares crested penguin and the Snares Islands penguin, is a penguin from New Zealand. The species breeds on the Snares Islands, a group of islands off the southern coast of the South Island. It is a yellow-crested penguin, with a size of 50–70 cm (19.5–27.5 in) and a weight of 2.5–4 kg (5.5–8.8 lb). It has dark blue-black upper parts and white underparts. It has a bright yellow eyebrow-stripe which extends over the eye to form a drooping, bushy crest. It has bare pink skin at the base of its large red-brown bill.

<span class="mw-page-title-main">Blue-footed booby</span> Species of bird

The blue-footed booby is a marine bird native to subtropical and tropical regions of the eastern Pacific Ocean. It is one of six species of the genus Sula – known as boobies. It is easily recognizable by its distinctive bright blue feet, which is a sexually selected trait and a product of their diet. Males display their feet in an elaborate mating ritual by lifting them up and down while strutting before the female. The female is slightly larger than the male and can measure up to 90 cm (35 in) long with a wingspan up to 1.5 m (5 ft).

<span class="mw-page-title-main">Northern jacana</span> Species of bird

The northern jacana or northern jaçana is a wader which is known as a resident breeder from coastal Mexico to western Panama, and on Cuba, Jamaica and Hispaniola in the Caribbean. It sometimes known to breed in Texas, United States, and has also been recorded on several occasions as a vagrant in Arizona. The jacanas are a group of wetland birds, which are identifiable by their huge feet and claws, which enable them to walk on floating vegetation in the shallow lakes that are their preferred habitat. In Jamaica, this bird is also known as the 'Jesus bird', as it appears to walk on water.

<span class="mw-page-title-main">Siberian jay</span> Species of bird

The Siberian jay is a small jay with a widespread distribution within the coniferous forests in North Eurasia. It has grey-brown plumage with a darker brown crown and a paler throat. It is rusty-red in a panel near the wing-bend, on the undertail coverts and on the sides of the tail. The sexes are similar. Although its habitat is being fragmented, it is a common bird with a very wide range so the International Union for Conservation of Nature has assessed its conservation status as being of "least concern".

<span class="mw-page-title-main">Fairy tern</span> Species of bird

The fairy tern is a small tern which is native to the southwestern Pacific. It is listed as "Vulnerable" by the IUCN and the New Zealand subspecies is "Critically Endangered". Fairy terns live in colonies along the coastlines and estuaries of Australia, New Zealand, and New Caledonia, feeding largely on small, epipelagic schooling fishes, breeding in areas close to their feeding sites. They have a monogamous mating system, forming breeding pairs in which they mate, nest, and care for offspring.

<span class="mw-page-title-main">Kentish plover</span> Species of bird

The Kentish plover is a small wader of the family Charadriidae that breeds on the shores of saline lakes, lagoons, and coasts, populating sand dunes, marshes, semi-arid desert, and tundra. Both male and female birds have pale plumages with a white underside, grey/brown back, dark legs and a dark bill; however, additionally the male birds also exhibit very dark incomplete breast bands, and dark markings either side of their head, therefore the Kentish plover is regarded as sexually dimorphic.

<span class="mw-page-title-main">Arabian babbler</span> Species of bird

The Arabian babbler is a passerine bird until recently placed in the genus Turdoides. It is a communally nesting resident bird of arid scrub in the Middle East which lives together in relatively stable groups with strict orders of rank.

<span class="mw-page-title-main">Chestnut-crowned babbler</span> Species of bird

The chestnut-crowned babbler is a medium-sized bird that is endemic to arid and semi-arid areas of south-eastern Australia. It is a member of the family Pomatostomidae, which comprises five species of Australo-Papuan babblers. All are boisterous and highly social, living in groups of up to 23 individuals that forage and breed communally. Other names include red-capped babbler, rufous-crowned babbler and chatterer.

<span class="mw-page-title-main">Southern pied babbler</span> Species of bird

The southern pied babbler is a species of bird in the family Leiothrichidae, found in dry savannah of Botswana, Namibia, South Africa, and Zimbabwe.

<span class="mw-page-title-main">Australasian swamphen</span> Species of bird

The Australasian swamphen, also known as the pūkeko, is a striking and socially complex bird endemic to New Zealand and other parts of Australasia, including eastern Indonesia, Papua New Guinea, and Australia. A member of the Rallidae family, the pūkeko is part of the diverse order Gruiformes, which includes species with similar characteristics such as cranes and other rail species. Within the Australasian swamphen species, five recognised subspecies exist, with P. p. melanotus being the most common and widely distributed in New Zealand. They display phenotypic characteristics typical of rails: relatively short wings and strong, elongated bills, adapted to its semi-aquatic lifestyle in wetlands.

<span class="mw-page-title-main">Eastern rockhopper penguin</span> Subspecies of bird

The eastern rockhopper penguin, also known as the tawaki piki toka, is a crested penguin with yellow crest feathers. It is a subspecies of the southern rockhopper penguin found in subantarctic regions and the Indian Ocean. It is one of the smallest crested penguins and has distinctive pink margins around its bill.

<span class="mw-page-title-main">Seabird breeding behavior</span>

The term seabird is used for many families of birds in several orders that spend the majority of their lives at sea. Seabirds make up some, if not all, of the families in the following orders: Procellariiformes, Sphenisciformes, Pelecaniformes, and Charadriiformes. Many seabirds remain at sea for several consecutive years at a time, without ever seeing land. Breeding is the central purpose for seabirds to visit land. The breeding period is usually extremely protracted in many seabirds and may last over a year in some of the larger albatrosses; this is in stark contrast with passerine birds. Seabirds nest in single or mixed-species colonies of varying densities, mainly on offshore islands devoid of terrestrial predators. However, seabirds exhibit many unusual breeding behaviors during all stages of the reproductive cycle that are not extensively reported outside of the primary scientific literature.

<span class="mw-page-title-main">Grey warbler</span> Species of bird

The grey warbler, also known by its Māori name riroriro or outside New Zealand as the grey gerygone, is an insectivorous bird in the family Acanthizidae endemic to New Zealand. It is sometimes known as the teetotum or rainbird. Its natural habitat is forests, but also tends to occupy lower vegetation habitats. These insectivorous birds feed on insects living in shrubs, and often feed on the wing. They are found throughout New Zealand, as well as offshore islands where shrub exists. In fact, these birds even flourish in suburban areas, as long as there is vegetation present.

<span class="mw-page-title-main">Parental care in birds</span>

Parental care refers to the level of investment provided by the mother and the father to ensure development and survival of their offspring. In most birds, parents invest profoundly in their offspring as a mutual effort, making a majority of them socially monogamous for the duration of the breeding season. This happens regardless of whether there is a paternal uncertainty.

References

  1. Barrows, Edward M. (2011). Animal Behavior Desk Reference (3rd ed.). Boca Raton, FL: CRC Press. ISBN   978-1-4398-3652-1.
  2. Zahavi, Amotz; Zahavi, Avishag (1997). The Handicap Principle: A Missing Piece of Darwin's Puzzle. Oxford University Press. ISBN   978-0-19-510035-8.
  3. Smith, Susan M. (1980). "Demand Behavior: A New Interpretation of Courtship Feeding". The Condor. 82 (3): 291–295. doi:10.2307/1367395. JSTOR   1367395.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Halley, Matthew R.; Holmes, Aaron L.; Robinson, W. Douglas (2015-06-01). "Biparental incubation and allofeeding at nests of Sagebrush Brewer's Sparrows". Journal of Field Ornithology. 86 (2): 153–162. doi:10.1111/jofo.12098. ISSN   1557-9263.
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Jing, Yu; Fang, Yun; Strickland, Dan; Lu, Nan; Sun, Yue-Hua (2009). "Alloparenting in the Rare Sichuan Jay (Perisoreus Internigrans) - Cuidado Aloparental en la Especie Rara Perisoreus internigrans". The Condor. 111 (4): 662–667. doi:10.1525/cond.2009.080114. JSTOR   10.1525/cond.2009.080114. S2CID   85099807.
  6. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mori, Yoshihisa; Kokubun, Nobuo; Shin, Hyoung-Chul; Takahashi, Akinori (2010-10-01). "An observation of between-mates feeding behaviour in chick-guarding chinstrap penguins". Polar Biology. 33 (10): 1437–1438. Bibcode:2010PoBio..33.1437M. doi:10.1007/s00300-010-0842-8. ISSN   0722-4060. S2CID   39865776.
  7. 1 2 3 4 5 6 7 8 9 10 11 12 Carlisle, Tamsie R.; Zahavi, Amotz (1986-04-01). "Helping at the nest, allofeeding and social status in immature Arabian babblers". Behavioral Ecology and Sociobiology. 18 (5): 339–351. Bibcode:1986BEcoS..18..339C. doi:10.1007/BF00299665. ISSN   0340-5443. S2CID   39397574.
  8. 1 2 3 4 5 6 7 Roulin, A.; Monstiers, B. Des; Ifrid, E.; Silva, A. Da; Genzoni, E.; Dreiss, A. N. (2016-02-01). "Reciprocal preening and food sharing in colour-polymorphic nestling barn owls" (PDF). Journal of Evolutionary Biology. 29 (2): 380–394. doi: 10.1111/jeb.12793 . ISSN   1420-9101. PMID   26563617. S2CID   29861997.
  9. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Lecomte, Nicolas; Kuntz, Gregoire; Lambert, Nicolas; Gendner, Jean-Paul; Handrich, Yves; Maho, Yvon Le; Bost, Charles-André (2006). "Alloparental feeding in the king penguin". Animal Behaviour. 71 (2): 457–462. doi:10.1016/j.anbehav.2005.07.007. S2CID   53203003.
  10. 1 2 3 4 5 Jouventin, Pierre; Barbraud, Christophe; Rubin, Michel (1995). "Adoption in the emperor penguin, Aptenodytes forsteri". Animal Behaviour. 50 (4): 1023–1029. doi:10.1016/0003-3472(95)80102-2. S2CID   53198665.
  11. Eggers, Sönke; Griesser, Michael; Ekman, Jan (2005-01-01). "Predator-induced plasticity in nest visitation rates in the Siberian jay (Perisoreus infaustus)". Behavioral Ecology. 16 (1): 309–315. doi: 10.1093/beheco/arh163 . ISSN   1045-2249.
  12. 1 2 3 4 Blomgren, Arne Blomgren. "Studies of less Familiar birds 162 Siberian Jay - British Birds". British Birds. Retrieved 2018-03-12.