Ambulatory blood pressure monitoring | |
---|---|
MeSH | D018660 |
Ambulatory blood pressure, as opposed to office blood pressure and home blood pressure, [1] is the blood pressure over the course of the full 24-hour sleep-wake cycle. Ambulatory blood pressure monitoring (ABPM) measures blood pressure at regular intervals throughout the day and night. It avoids the white coat hypertension effect in which a patient's blood pressure is elevated during the examination process due to nervousness and anxiety caused by being in a clinical setting. ABPM can also detect the reverse condition, masked hypertension, where the patient has normal blood pressure during the examination but uncontrolled blood pressure outside the clinical setting, masking a high 24-hour average blood pressure. [2] Out-of-office measurements are highly recommended as an adjunct to office measurements by almost all hypertension organizations.
24-hour, non-invasive ambulatory blood pressure (BP) monitoring allows estimates of cardiac risk factors including excessive BP variability or patterns of circadian variability known to increase risks of a cardiovascular event. [3]
Ambulatory blood pressure monitoring allows blood pressure to be intermittently monitored during sleep and is useful to determine whether the patient is a "dipper" or "non-dipper"—that is to say, whether or not blood pressure falls at night compared to daytime values. A nighttime fall is normal and desirable. It correlates with relationship depth, and also other factors such as sleep quality, age, hypertensive status, marital status, and social network support. [4] Absence of a nighttime dip is associated with poorer health outcomes; a 2011 study found increased mortality. [5] Nocturnal hypertension is also associated with end organ damage, [6] and is a much better indicator than the daytime blood pressure reading.
Readings revealing possible hypertension-related end organ damage, such as left ventricular hypertrophy or narrowing of the retinal arteries, are more likely to be obtained through ambulatory blood pressure monitoring than through clinical blood pressure measurement. Isolated clinical BP measurements are more subject to the general marked variability of BP measurements. Clinical measurements may be affected by the "white coat effect", a rise in the blood pressure of many patients due to the stress of being in the medical situation. [7]
Optimal blood pressure fluctuates over a 24-hour sleep-wake cycle, with values rising in the daytime and falling after midnight. The reduction in early morning blood pressure compared with average daytime pressure is referred to as the night-time dip. Ambulatory blood pressure monitoring may reveal a blunted or abolished overnight dip in blood pressure. This is clinically useful information because non-dipping blood pressure is associated with a higher risk of left ventricle hypertrophy and cardiovascular mortality. By comparing the early morning pressures with average daytime pressures, a ratio can be calculated which is of value in assessing relative risk. Dipping patterns are classified by the percent of drop in pressure, and based on the resulting ratios a person may be clinically classified for treatment as a "non-dipper" (with a blood pressure drop of less than 10%), a "dipper", an "extreme dipper", or a "reverse dipper", as detailed in the chart below. Additionally, ambulatory monitoring may reveal an excessive morning blood pressure surge, which is associated with increased risk of stroke in elderly hypertensive people. [8] [9]
Classification of dipping in blood pressure is based on the American Heart Association's calculation, using systolic blood pressure (SBP) as follows:[ citation needed ]
Range | Class |
---|---|
<0% | Reverse Dipper |
0% - 10% | Non-Dipper |
10% - 20% | Dipper |
>20% | Extreme Dipper |
Dippers have significantly lower all-cause mortality than non-dippers or reverse dippers; "... ambulatory blood pressure predicts mortality significantly better than clinic blood pressure." [10]
Blood pressure (BP) is the pressure of circulating blood against the walls of blood vessels. Most of this pressure results from the heart pumping blood through the circulatory system. When used without qualification, the term "blood pressure" refers to the pressure in a brachial artery, where it is most commonly measured. Blood pressure is usually expressed in terms of the systolic pressure over diastolic pressure in the cardiac cycle. It is measured in millimeters of mercury (mmHg) above the surrounding atmospheric pressure, or in kilopascals (kPa). The difference between the systolic and diastolic pressures is known as pulse pressure, while the average pressure during a cardiac cycle is known as mean arterial pressure.
Hypertension, also known as high blood pressure, is a long-term medical condition in which the blood pressure in the arteries is persistently elevated. High blood pressure usually does not cause symptoms itself. It is, however, a major risk factor for stroke, coronary artery disease, heart failure, atrial fibrillation, peripheral arterial disease, vision loss, chronic kidney disease, and dementia. Hypertension is a major cause of premature death worldwide.
Pulse pressure is the difference between systolic and diastolic blood pressure. It is measured in millimeters of mercury (mmHg). It represents the force that the heart generates each time it contracts. Healthy pulse pressure is around 40 mmHg. A pulse pressure that is consistently 60 mmHg or greater is likely to be associated with disease, and a pulse pressure of 50 mmHg or more increases the risk of cardiovascular disease. Pulse pressure is considered low if it is less than 25% of the systolic. A very low pulse pressure can be a symptom of disorders such as congestive heart failure.
White coat hypertension (WHT), also known as white coat syndrome, is a form of labile hypertension in which people exhibit a blood pressure level above the normal range in a clinical setting, although they do not exhibit it in other settings. It is believed that the phenomenon is due to anxiety experienced during a clinic visit. The patient's daytime ambulatory blood pressure is used as a reference as it takes into account ordinary levels of daily stress.
Hypertensive kidney disease is a medical condition referring to damage to the kidney due to chronic high blood pressure. It manifests as hypertensive nephrosclerosis. It should be distinguished from renovascular hypertension, which is a form of secondary hypertension, and thus has opposite direction of causation.
A hypertensive emergency is very high blood pressure with potentially life-threatening symptoms and signs of acute damage to one or more organ systems. It is different from a hypertensive urgency by this additional evidence for impending irreversible hypertension-mediated organ damage (HMOD). Blood pressure is often above 200/120 mmHg, however there are no universally accepted cutoff values.
Hypertensive heart disease includes a number of complications of high blood pressure that affect the heart. While there are several definitions of hypertensive heart disease in the medical literature, the term is most widely used in the context of the International Classification of Diseases (ICD) coding categories. The definition includes heart failure and other cardiac complications of hypertension when a causal relationship between the heart disease and hypertension is stated or implied on the death certificate. In 2013 hypertensive heart disease resulted in 1.07 million deaths as compared with 630,000 deaths in 1990.
Impedance cardiography (ICG) is a non-invasive technology measuring total electrical conductivity of the thorax and its changes in time to process continuously a number of cardiodynamic parameters, such as stroke volume (SV), heart rate (HR), cardiac output (CO), ventricular ejection time (VET), pre-ejection period and used to detect the impedance changes caused by a high-frequency, low magnitude current flowing through the thorax between additional two pairs of electrodes located outside of the measured segment. The sensing electrodes also detect the ECG signal, which is used as a timing clock of the system.
Arterial stiffness occurs as a consequence of biological aging and arteriosclerosis. Inflammation plays a major role in arteriosclerosis development, and consequently it is a major contributor in large arteries stiffening. Increased arterial stiffness is associated with an increased risk of cardiovascular events such as myocardial infarction, hypertension, heart failure, and stroke, two of the leading causes of death in the developed world. The World Health Organization predicts that in 2010, cardiovascular disease will also be the leading killer in the developing world and represents a major global health problem.
In medicine, systolic hypertension is defined as an elevated systolic blood pressure (SBP). If the systolic blood pressure is elevated (>140) with a normal (<90) diastolic blood pressure (DBP), it is called isolated systolic hypertension. Eighty percent of people with systolic hypertension are over the age of 65 years old. Isolated systolic hypertension is a specific type of widened pulse pressure.
Prehypertension, also known as high normal blood pressure and borderline hypertensive (BH), is a medical classification for cases where a person's blood pressure is elevated above optimal or normal, but not to the level considered hypertension. Prehypertension is now referred to as "elevated blood pressure" by the American College of Cardiology (ACC) and the American Heart Association (AHA). The ACC/AHA define elevated blood pressure as readings with a systolic pressure from 120 to 129 mm Hg and a diastolic pressure under 80 mm Hg, Readings greater than or equal to 130/80 mm Hg are considered hypertension by ACC/AHA and if greater than or equal to 140/90 mm Hg by ESC/ESH. and the European Society of Hypertension defines "high normal blood pressure" as readings with a systolic pressure from 130 to 139 mm Hg and a diastolic pressure 85-89 mm Hg.
Cilnidipine is a calcium channel blocker. Cilnidipine is approved for use in Japan, China, India, Nepal, and Korea for hypertension.
Complications of hypertension are clinical outcomes that result from persistent elevation of blood pressure. Hypertension is a risk factor for all clinical manifestations of atherosclerosis since it is a risk factor for atherosclerosis itself. It is an independent predisposing factor for heart failure, coronary artery disease, stroke, kidney disease, and peripheral arterial disease. It is the most important risk factor for cardiovascular morbidity and mortality, in industrialized countries.
Orthostatic hypertension is a medical condition consisting of a sudden and abrupt increase in blood pressure (BP) when a person stands up. Orthostatic hypertension is diagnosed by a rise in systolic BP of 20 mmHg or more when standing. Orthostatic diastolic hypertension is a condition in which the diastolic BP raises to 98 mmHg or over in response to standing, but this definition currently lacks clear medical consensus, so is subject to change. Orthostatic hypertension involving the systolic BP is known as systolic orthostatic hypertension.
Arterial blood pressure is most commonly measured via a sphygmomanometer, which historically used the height of a column of mercury to reflect the circulating pressure. Blood pressure values are generally reported in millimetres of mercury (mmHg), though modern aneroid and electronic devices do not contain mercury.
Hypertensive disease of pregnancy, also known as maternal hypertensive disorder, is a group of high blood pressure disorders that include preeclampsia, preeclampsia superimposed on chronic hypertension, gestational hypertension, and chronic hypertension.
Hypertension is managed using lifestyle modification and antihypertensive medications. Hypertension is usually treated to achieve a blood pressure of below 140/90 mmHg to 160/100 mmHg. According to one 2003 review, reduction of the blood pressure by 5 mmHg can decrease the risk of stroke by 34% and of ischaemic heart disease by 21% and reduce the likelihood of dementia, heart failure, and mortality from cardiovascular disease.
The Systolic Blood Pressure Intervention Trial (SPRINT) is a multi-center clinical trial that was performed from 2010 to 2015, and published in November 2015.
Thomas G. Pickering was a British physician and academic. He was a professor of medicine at College of Physicians and Surgeons, Columbia University Medical Center in New York City. He was an internationally renowned expert in clinical hypertension and a leader in the fields of hypertension and cardiovascular behavioral medicine. He coined the term "white-coat hypertension" to describe those whose blood pressure was elevated in the doctor's office, but normal in everyday life. He later published the first editorial describing "masked hypertension". He also discovered and gave his name to the Pickering Syndrome, where bilateral renal artery stenosis causes flash pulmonary edema.
Una Martin is an emeritus professor of clinical pharmacology and was formerly the deputy pro-vice chancellor for equalities at the University of Birmingham. She is an expert in hypertension and ambulatory monitoring. She is a Fellow of the British Pharmacological Society.