American Standard Safety System

Last updated

The American Standard Safety System, or ASSS, is a connection system for gas cylinders with a volume exceeding 25 cubic feet. The connections differ in thread type and size, right and left-handed threading, internal and external threading, and nipple-seat design. This variability reduces the risk of errors such as administering the wrong gas to a patient, or utilizing equipment calibrated for one gas with another. However, as there are only 26 connections for the 62 gases and mixtures recognized by the CGA, connections are not unique. [1]

Connection specifications will be listed in cylinder catalogs as a list of abbreviations and numbers, such as that for O2, CGA-540 0.903-14NGO-RH-Ext. This means that the Compressed Gas Association has classified this connection as number 540, the thread bore is 0.903 inches, with 14 threads per inch. The connection is right-handed (RH) and must be turned clock-wise to tighten. The threading is external, so the connections of the cylinder and the attached equipment must be fixed together using a nipple, which is signified by NGO. A nipple is a bolt which fits together two male connections. Internal (Int) threading allows for equipment to be screwed directly onto the cylinder outlet. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Diving cylinder</span> Container to supply high pressure breathing gas for divers

A diving cylinder or diving gas cylinder is a gas cylinder used to store and transport high pressure gas used in diving operations. This may be breathing gas used with a scuba set, in which case the cylinder may also be referred to as a scuba cylinder, scuba tank or diving tank. When used for an emergency gas supply for surface supplied diving or scuba, it may be referred to as a bailout cylinder or bailout bottle. It may also be used for surface-supplied diving or as decompression gas. A diving cylinder may also be used to supply inflation gas for a dry suit or buoyancy compensator. Cylinders provide gas to the diver through the demand valve of a diving regulator or the breathing loop of a diving rebreather.

<span class="mw-page-title-main">Diving regulator</span> Mechanism that controls the pressure of a breathing gas supply for diving

A diving regulator or underwater diving regulator is a pressure regulator that controls the pressure of breathing gas for underwater diving. The most commonly recognised application is to reduce pressurized breathing gas to ambient pressure and deliver it to the diver, but there are also other types of gas pressure regulator used for diving applications. The gas may be air or one of a variety of specially blended breathing gases. The gas may be supplied from a scuba cylinder carried by the diver, in which case it is called a scuba regulator, or via a hose from a compressor or high-pressure storage cylinders at the surface in surface-supplied diving. A gas pressure regulator has one or more valves in series which reduce pressure from the source, and use the downstream pressure as feedback to control the delivered pressure, or the upstream pressure as feedback to prevent excessive flow rates, lowering the pressure at each stage.

<span class="mw-page-title-main">Pressure vessel</span> Vessel for pressurised gases or liquids

A pressure vessel is a container designed to hold gases or liquids at a pressure substantially different from the ambient pressure.

<span class="mw-page-title-main">Gas cylinder</span> Cylindrical container for storing pressurised gas

A gas cylinder is a pressure vessel for storage and containment of gases at above atmospheric pressure. High-pressure gas cylinders are also called bottles. Inside the cylinder the stored contents may be in a state of compressed gas, vapor over liquid, supercritical fluid, or dissolved in a substrate material, depending on the physical characteristics of the contents. A typical gas cylinder design is elongated, standing upright on a flattened bottom end, with the valve and fitting at the top for connecting to the receiving apparatus.

<span class="mw-page-title-main">Screw thread</span> Helical structure used to convert between rotational and linear movement or force

A screw thread is a helical structure used to convert between rotational and linear movement or force. A screw thread is a ridge wrapped around a cylinder or cone in the form of a helix, with the former being called a straight thread and the latter called a tapered thread. A screw thread is the essential feature of the screw as a simple machine and also as a threaded fastener.

British Standard Pipe (BSP) is a set of technical standards for screw threads that has been adopted internationally for interconnecting and sealing pipes and fittings by mating an external (male) thread with an internal (female) thread. It has been adopted as standard in plumbing and pipe fitting, except in North America, where NPT and related threads are used.

The Compressed Gas Association (CGA) is an American trade association for the industrial and medical gas supply industries.

<span class="mw-page-title-main">Scuba manifold</span> Scuba component used to functionally connect diving cylinders

A scuba manifold is a device incorporating one or more valves and one or more gas outlets with scuba regulator connections, used to connect two or more diving cylinders containing breathing gas, providing a greater amount of gas for longer dive times or deeper dives. An isolation manifold allows the connection between the cylinders to be closed in the case of a leak from one of the cylinders or its valve or regulator, conserving the gas in the other cylinder. Diving with two or more cylinders is often associated with technical diving. Almost all manifold assemblies include one cylinder valve for each cylinder, and the overwhelming majority are for two cylinders.

<span class="mw-page-title-main">Pin Index Safety System</span> Component of medical gas supply systems

The Pin Index Safety System (PISS) is a means of connecting high pressure cylinders containing medical gases to a regulator or other utilization equipment. It uses geometric features on the valve and yoke to prevent mistaken use of the wrong gas. This system is widely used worldwide for anesthesia machines, portable oxygen administration sets, and inflation gases used in surgery.

<span class="mw-page-title-main">Piping and plumbing fitting</span> Connecting pieces in pipe systems

A fitting or adapter is used in pipe systems to connect sections of pipe or tube, adapt to different sizes or shapes, and for other purposes such as regulating fluid flow. These fittings are used in plumbing to manipulate the conveyance of fluids such as water for potatory, irrigational, sanitary, and refrigerative purposes, gas, petroleum, liquid waste, or any other liquid or gaseous substances required in domestic or commercial environments, within a system of pipes or tubes, connected by various methods, as dictated by the material of which these are made, the material being conveyed, and the particular environmental context in which they will be used, such as soldering, mortaring, caulking, plastic welding, welding, friction fittings, threaded fittings, and compression fittings.

<span class="mw-page-title-main">Pressure regulator</span> Control valve that maintains the pressure of a fluid or gas

A pressure regulator is a valve that controls the pressure of a fluid to a desired value, using negative feedback from the controlled pressure. Regulators are used for gases and liquids, and can be an integral device with a pressure setting, a restrictor and a sensor all in the one body, or consist of a separate pressure sensor, controller and flow valve.

<span class="mw-page-title-main">Scuba gas management</span> Logistical aspects of scuba breathing gas

Scuba gas management is the aspect of scuba diving which includes the gas planning, blending, filling, analysing, marking, storage, and transportation of gas cylinders for a dive, the monitoring and switching of breathing gases during a dive, efficient and correct use of the gas, and the provision of emergency gas to another member of the dive team. The primary aim is to ensure that everyone has enough to breathe of a gas suitable for the current depth at all times, and is aware of the gas mixture in use and its effect on decompression obligations, nitrogen narcosis, and oxygen toxicity risk. Some of these functions may be delegated to others, such as the filling of cylinders, or transportation to the dive site, but others are the direct responsibility of the diver using the gas.

<span class="mw-page-title-main">Doing It Right (scuba diving)</span> Technical diving safety philosophy

Doing It Right (DIR) is a holistic approach to scuba diving that encompasses several essential elements, including fundamental diving skills, teamwork, physical fitness, and streamlined and minimalistic equipment configurations. DIR proponents maintain that through these elements, safety is improved by standardizing equipment configuration and dive-team procedures for preventing and dealing with emergencies.

<span class="mw-page-title-main">Gas cabinet</span> Device for containing gas cylinders

A gas cabinet is a metallic enclosure which is used to provide local exhaust ventilation system for virtually all of the gases used or generated in the semiconductor, solar, MEMS, NANO, solar PV, manufacturing and other advanced technologies.

<span class="mw-page-title-main">Testing and inspection of diving cylinders</span> Periodical inspection and testing to revalidate fitness for service

Transportable pressure vessels for high-pressure gases are routinely inspected and tested as part of the manufacturing process. They are generally marked as evidence of passing the tests, either individually or as part of a batch, and certified as meeting the standard of manufacture by the authorised testing agency, making them legal for import and sale. When a cylinder is manufactured, its specification, including manufacturer, working pressure, test pressure, date of manufacture, capacity and weight are stamped on the cylinder.

<span class="mw-page-title-main">POL valve</span> Gas connection fitting used on Liquefied petroleum gas 4cylinders

A POL valve is a gas connection fitting used on liquefied petroleum gas (LPG) cylinders.

<span class="mw-page-title-main">Propane, butane, and LPG container valve connections</span>

Several types of valve connections for propane, butane, and LPG containers exist for transport and storage, sometimes with overlapping usage and applications, and there are major differences in usage between different countries. Even within a single country more than one type can be in use for a specific application. This requires adequate tooling and adapters for replenishment in multiple countries. For example for overlanders and users of autogas traveling with a container originating in one country to other parts of the world this is a major concern. This article describes existing standards and the standards in use for a number of countries. For disposable containers the availability per country is described. Filling stations may be able and allowed to fill foreign containers if adequate adapters are available. Adapters are provided by, amongst others, camping stores. The iOverlander database maintained by travelers, My LPG and the Facebook group "Cooking Gas Around the World" provide more information about individual sources per country. Much general information about global LPG use and standardization is available from the World LPG Association and the AEGPL

<span class="mw-page-title-main">Scuba cylinder valve</span> Valve controlling flow of breathing gas into and out of a scuba cylinder

A scuba cylinder valve or pillar valve is a high pressure manually operated screw-down shut off valve fitted to the neck of a scuba cylinder to control breathing gas flow to and from the pressure vessel and to provide a connection with the scuba regulator or filling whip. Cylinder valves are usually machined from brass and finished with a protective and decorative layer of chrome plating. A metal or plastic dip tube or valve snorkel screwed into the bottom of the valve extends into the cylinder to reduce the risk of liquid or particulate contaminants in the cylinder getting into the gas passages when the cylinder is inverted, and blocking or jamming the regulator.

References

  1. Wilkins, Robert L.; Stoller, James K.; Kacmarek, Robert M. (2009). Egan's Fundamentals of Respiratory Care (9, illustrated ed.). Mosby/Elsevier. ISBN   978-0-323-03657-3.
  2. "Safety System" . Retrieved 15 September 2015.