Ames strain

Last updated

The Ames strain is one of 89 known strains of the anthrax bacterium ( Bacillus anthracis ). It was isolated from a diseased 14-month-old Beefmaster heifer that died in Sarita, Texas in 1981. The strain was isolated at the Texas Veterinary Medical Diagnostic Laboratory and a sample was sent to the United States Army Medical Research Institute of Infectious Diseases (USAMRIID). [1] Researchers at USAMRIID mistakenly believed the strain came from Ames, Iowa because the return address on the package was the USDA's National Veterinary Services Laboratories in Ames and mislabeled the specimen. [2]

Contents

The Ames strain came to wide public attention during the 2001 anthrax attacks when seven letters containing it were mailed to media outlets and US Senators on September 18, 2001, and October 9, 2001.

Because of its virulence, the Ames strain is used by the United States for developing vaccines and testing their effectiveness. Use of the Ames strain started in the 1980s, after work on weaponizing the Vollum 1B strain ended and all weaponized stocks were destroyed after the end of the U.S. biological warfare program in 1969. [3]

Virulence

Virulence plasmids

Researchers have identified two specific virulence plasmids in B. anthracis, with the Ames strain expressing greater virulence compared to other strains. The virulence of B. anthracis results from two plasmids, pXO1 and pXO2. Plasmid pXO2 encodes an antiphagocytic poly-D-glutamic acid capsule, which allows B. anthracis to evade the host immune system. Plasmid pXO1 encodes three toxin proteins: edema factor (EF), lethal factor (LF) and protective antigen (PA). Variation in virulence can be explained by the presence or absence of plasmids; for example, isolates missing either pXO1 or pXO2 are considered attenuated, meaning they will not cause significant infection. One possible mechanism that may be responsible for the regulation of virulence is the copy number of plasmids per cell. The number of plasmids among isolates varies, with as many as 243 copies of pXO1 and 32 copies of pXO2 per cell. Studies have shown that pXO2 contributes significantly to the observed variation in virulence, as mutants producing greater amounts of the capsule show a higher level of virulence. [4] Virulent strains that were cured of the pXO1 plasmid, but had the Ames pXO2 plasmid were still fully virulent for mice; thus, the Ames pXO2 plasmid specifically appears to give a higher level of virulence, as strains that are missing one of the plasmids are usually attenuated. Additionally, isolates that carried the Ames pXO2 were found to be more virulent than those with the Vollum 1B strain pXO2, also a virulent strain. [5] Another well-known strain of anthrax, the Sterne strain, is avirulent, meaning it does not cause significant illness in animals or humans.

Antibiotic resistance

The Ames strain is susceptible to the antibiotics recommended for the treatment of anthrax and for post-exposure prophylaxis by the United States CDC. [6] [7] [8] This susceptibility is similar to most other strains of Bacillus anthracis and is based on a comparison of the minimal inhibitory concentrations determined for each drug to the susceptibility breakpoints published in the Clinical Laboratory Standards Institute M45 document. [9] Ciprofloxacin is the recommended treatment for respiratory anthrax, but studies have shown that a newer fluoroquinolone, gatifloxacin, can increase the survival of mice susceptible to the Ames strain. [10]

The Sterne strain, like all Bacillus anthracis strains, has two functional 𝛃-lactamases, but gene expression is usually not sufficient to allow drug resistance. The Sterne strain acts as a good comparison to other anthrax strains, as it is a prototypical and easy to work with strain, with sensitivity to penicillin. [11]

Anthrax vaccines

Vaccine development using attenuated strains

Virulence can usually be reduced by removing the virulence plasmids, and these attenuated strains can be used to make vaccines against B. anthracis. If either the pXO1 or pXO2 plasmid is missing, the strain cannot produce all of the virulence factors, and is considered attenuated. The Sterne strain naturally lacks a pXO2 plasmid; thus, it is attenuated and can be safely used to generate an immune response. [12] To create attenuated strains, the virulence plasmid pXO1 is usually removed, but the Ames strain can still be virulent in mouse models if the pXO1 plasmid is removed, but the pXO2 plasmid remains.

Anthrax vaccines are used for both livestock and human immunization. One of the most used anthrax vaccines today is based on the Sterne strain, in the form of a live-spore vaccine for animals. A vaccine with live spores is dangerous for humans, so vaccines based on the secreted toxin protein, protective antigen (PA), have been explored. However, PA vaccines are less protective than live-spore vaccines, and a PA-based vaccine against the Ames strain for humans has not been developed. [13]

Existing anthrax vaccines

The only licensed human anthrax vaccine in America, Anthrax vaccine adsorbed (AVA), is based on protective antigen, and has varying success against Ames depending on the animal model. This inconsistency suggests that multiple model organisms must be studied when testing vaccines for human use. [14] Currently, researchers are investigating a way to inactivate anthrax spores, such as with formaldehyde; this would provide an alternative to the live spore and PA vaccines. [13]

Strain tracking

The identification of strain-specific single-nucleotide polymorphisms (SNPs) in the Ames strain allows for the development of diagnostic tests that can help track outbreaks. SNPs can define specific genetic groups, and are therefore important for detecting and subtyping bacterial pathogens. Six SNPs are identified as highly specific and are seen only in the Ames strain; there are four on the chromosome, one on the pXO1 plasmid and one on the pXO2 plasmid. Any of the six SNPs can differentiate the Ames strain from the other 88 B. anthracis strains. However, one of the SNPs has less discriminatory power against strains that are closely related to Ames.

Using Ames strain-specific SNPs and real-time PCR, investigators can either confirm or disconfirm thousands of samples as the Ames strain. The stability of these SNPs as diagnostic markers results from the low mutation rates in the DNA of B. anthracis. The lack of these mutational events limits the likelihood of observing a false positive in these assays, as the strain is unlikely to mutate to a novel or ancestral state. [15] Additionally, anthrax has this reduced genetic variability because its spores can remain dormant for an extended period of time, and should not accumulate genetic mutations as they remain inactive. [16] Thus, the stable nature of the Ames strain allows researchers to look for small genetic variations and connect them to a source sample. The approach of using strain-specific SNPs allows for highly specific strain identification that can be widely applied to other bioterror agents.

Related Research Articles

<i>Bacillus cereus</i> Species of bacterium

Bacillus cereus is a Gram-positive rod-shaped bacterium commonly found in soil, food, and marine sponges. The specific name, cereus, meaning "waxy" in Latin, refers to the appearance of colonies grown on blood agar. Some strains are harmful to humans and cause foodborne illness due to their spore-forming nature, while other strains can be beneficial as probiotics for animals, and even exhibit mutualism with certain plants. B. cereus bacteria may be anaerobes or facultative anaerobes, and like other members of the genus Bacillus, can produce protective endospores. They have a wide range of virulence factors, including phospholipase C, cereulide, sphingomyelinase, metalloproteases, and cytotoxin K, many of which are regulated via quorum sensing. B. cereus strains exhibit flagellar motility.

<span class="mw-page-title-main">Anthrax</span> Infection caused by Bacillus anthracis bacteria

Anthrax is an infection caused by the bacterium Bacillus anthracis. It can occur in four forms: skin, lungs, intestinal, and injection. Symptom onset occurs between one day and more than two months after the infection is contracted. The skin form presents with a small blister with surrounding swelling that often turns into a painless ulcer with a black center. The inhalation form presents with fever, chest pain and shortness of breath. The intestinal form presents with diarrhea, abdominal pains, nausea and vomiting. The injection form presents with fever and an abscess at the site of drug injection.

<i>Shigella</i> Genus of bacteria

Shigella is a genus of bacteria that is Gram-negative, facultatively anaerobic, non–spore-forming, nonmotile, rod-shaped, and is genetically closely related to Escherichia. The genus is named after Kiyoshi Shiga, who discovered it in 1897.

Serial passage is the process of growing bacteria or a virus in iterations. For instance, a virus may be grown in one environment, and then a portion of that virus population can be removed and put into a new environment. This process is repeated with as many stages as desired, and then the final product is studied, often in comparison with the original virus.

<span class="mw-page-title-main">Bacterial capsule</span> Polysaccharide layer that lies outside the cell envelope in many bacteria

The bacteria capsule is a large structure common to many bacteria. It is a polysaccharide layer that lies outside the cell envelope, and is thus deemed part of the outer envelope of a bacterial cell. It is a well-organized layer, not easily washed off, and it can be the cause of various diseases.

<i>Shigella flexneri</i> Species of bacterium

Shigella flexneri is a species of Gram-negative bacteria in the genus Shigella that can cause diarrhea in humans. Several different serogroups of Shigella are described; S. flexneri belongs to group B. S. flexneri infections can usually be treated with antibiotics, although some strains have become resistant. Less severe cases are not usually treated because they become more resistant in the future. Shigella are closely related to Escherichia coli, but can be differentiated from E.coli based on pathogenicity, physiology and serology.

<span class="mw-page-title-main">Anthrax vaccine</span> Vaccines against the bacterium Bacillus anthracis

Anthrax vaccines are vaccines to prevent the livestock and human disease anthrax, caused by the bacterium Bacillus anthracis.

<i>Burkholderia pseudomallei</i> Species of bacterium

Burkholderia pseudomallei is a Gram-negative, bipolar, aerobic, motile rod-shaped bacterium. It is a soil-dwelling bacterium endemic in tropical and subtropical regions worldwide, particularly in Thailand and northern Australia. It was reported in 2008 that there had been an expansion of the affected regions due to significant natural disasters, and it could be found in Southern China, Hong Kong, and countries in America. B. pseudomallei, amongst other pathogens, has been found in monkeys imported into the United States from Asia for laboratory use, posing a risk that the pathogen could be introduced into the country.

Dichelobacter nodosus, formerly Bacteroides nodosus, is a Gram-negative, obligate anaerobe of the family Cardiobacteriaceae. It has polar fimbriae and is the causative agent of ovine foot rot as well as interdigital dermatitis. It is the lone species in the genus Dichelobacter.

<i>Burkholderia thailandensis</i> Species of bacterium

Burkholderia thailandensis is a nonfermenting motile, Gram-negative bacillus that occurs naturally in soil. It is closely related to Burkholderia pseudomallei, but unlike B. pseudomallei, it only rarely causes disease in humans or animals. The lethal inoculum is approximately 1000 times higher than for B. pseudomallei. It is usually distinguished from B. pseudomallei by its ability to assimilate arabinose. Other differences between these species include lipopolysaccharide composition, colony morphology, and differences in metabolism.

An attenuated vaccine is a vaccine created by reducing the virulence of a pathogen, but still keeping it viable. Attenuation takes an infectious agent and alters it so that it becomes harmless or less virulent. These vaccines contrast to those produced by "killing" the pathogen.

<i>Rhodococcus equi</i> Species of bacterium

Rhodococcus equi is a Gram-positive coccobacillus bacterium. The organism is commonly found in dry and dusty soil and can be important for diseases of domesticated animals. The frequency of infection can reach near 60%. R. equi is an important pathogen causing pneumonia in foals. Since 2008, R. equi has been known to infect wild boar and domestic pigs. R. equi can infect humans. At-risk groups are immunocompromised people, such as HIV-AIDS patients or transplant recipients. Rhodococcus infection in these patients resemble clinical and pathological signs of pulmonary tuberculosis. It is facultative intracellular.

Segrosomes are protein complexes that ensure accurate segregation (partitioning) of plasmids or chromosomes during bacterial cell division.

<i>Bacillus anthracis</i> Species of bacterium

Bacillus anthracis is a gram-positive and rod-shaped bacterium that causes anthrax, a deadly disease to livestock and, occasionally, to humans. It is the only permanent (obligate) pathogen within the genus Bacillus. Its infection is a type of zoonosis, as it is transmitted from animals to humans. It was discovered by a German physician Robert Koch in 1876, and became the first bacterium to be experimentally shown as a pathogen. The discovery was also the first scientific evidence for the germ theory of diseases.

Microbial toxins are toxins produced by micro-organisms, including bacteria, fungi, protozoa, dinoflagellates, and viruses. Many microbial toxins promote infection and disease by directly damaging host tissues and by disabling the immune system. Endotoxins most commonly refer to the lipopolysaccharide (LPS) or lipooligosaccharide (LOS) that are in the outer plasma membrane of Gram-negative bacteria. The botulinum toxin, which is primarily produced by Clostridium botulinum and less frequently by other Clostridium species, is the most toxic substance known in the world. However, microbial toxins also have important uses in medical science and research. Currently, new methods of detecting bacterial toxins are being developed to better isolate and understand these toxins. Potential applications of toxin research include combating microbial virulence, the development of novel anticancer drugs and other medicines, and the use of toxins as tools in neurobiology and cellular biology.

<span class="mw-page-title-main">Anthrax vaccine adsorbed</span> Vaccine

Anthrax vaccine adsorbed, sold under the brand name Biothrax among others, is a vaccine intended to provide acquired immunity against Bacillus anthracis.

<span class="mw-page-title-main">Reverse genetics</span> Method in molecular genetics

Reverse genetics is a method in molecular genetics that is used to help understand the function(s) of a gene by analysing the phenotypic effects caused by genetically engineering specific nucleic acid sequences within the gene. The process proceeds in the opposite direction to forward genetic screens of classical genetics. While forward genetics seeks to find the genetic basis of a phenotype or trait, reverse genetics seeks to find what phenotypes are controlled by particular genetic sequences.

The exosporium is the outer surface layer of mature spores. In plant spores it is also referred to as the exine. Some bacteria also produce endospores with an exosporium, of which the most commonly studied are Bacillus species, particularly Bacillus cereus and the anthrax-causing bacterium Bacillus anthracis. The exosporium is the portion of the spore that interacts with the environment or host organism, and may contain spore antigens. Exosporium proteins, such as Cot protein, are also discovered related to strains of B. anthracis and B.cereus. This Cot protein share similar sequences with other spore coat proteins, and their putative determinants are believed to include bxpC, lunA, exsA, etc.

Bacillus cereus biovar anthracis is a variant of the Bacillus cereus bacterium that has acquired plasmids similar to those of Bacillus anthracis. As a result, it is capable of causing anthrax. In 2016, it was added to the CDC's list of select agents and toxins.

Theresa Marie Koehler is an American microbiologist who is the Herbert L. and Margaret W. DuPont Distinguished Professor in Biomedical Sciences and Chair of the Department of Microbiology and Molecular Genetics at McGovern Medical School. She is known for her extensive research on anthrax and was elected Fellow of the American Association for the Advancement of Science in 2021.

References

  1. Rasko DA, Worsham PL, Abshire TG, Stanley ST, Bannan JD, Wilson MR, et al. (March 2011). "Bacillus anthracis comparative genome analysis in support of the Amerithrax investigation". Proceedings of the National Academy of Sciences of the United States of America. 108 (12): 5027–32. Bibcode:2011PNAS..108.5027R. doi: 10.1073/pnas.1016657108 . PMC   3064363 . PMID   21383169.
  2. Warrick J (2002-01-29). "One Anthrax Answer: Ames Strain Not From Iowa". The Washington Post.
  3. Fainaru S, Warrick J (2001-11-25). "Deadly Anthrax Strain Leaves a Muddy Trail". Washington Post.
  4. Coker PR, Smith KL, Fellows PF, Rybachuck G, Kousoulas KG, Hugh-Jones ME (March 2003). "Bacillus anthracis virulence in Guinea pigs vaccinated with anthrax vaccine adsorbed is linked to plasmid quantities and clonality". Journal of Clinical Microbiology. 41 (3): 1212–8. doi:10.1128/JCM.41.3.1212-1218.2003. PMC   150325 . PMID   12624053.
  5. Welkos SL, Vietri NJ, Gibbs PH (May 1993). "Non-toxigenic derivatives of the Ames strain of Bacillus anthracis are fully virulent for mice: role of plasmid pX02 and chromosome in strain-dependent virulence". Microbial Pathogenesis. 14 (5): 381–8. doi:10.1006/mpat.1993.1037. PMID   8366815.
  6. Turnbull, Peter CB; Sirianni, Nicky M; LeBron, Carlos I; Samaan, Marian N; Sutton, Felicia N; Reyes, Anatalio E; Peruski, Leonard F (August 2004). "MICs of Selected Antibiotics for Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis, and Bacillus mycoides from a Range of Clinical and Environmental Sources as Determined by the Etest". Journal of Clinical Microbiology. 42 (8): 3626–3634. doi:10.1128/jcm.42.8.3626-3634.2004. PMC   497625 . PMID   15297508.
  7. Heine, HS; Shadomy, SV; Boyer, AE; Chuvala, L; Riggins, R; Kerterson, A; Myrick, J; Craig, J; Candela, MG; Barr, JR; Hendricks, K; Bower, WA; Walke, H; Drusano, GL (September 2017). "Evaluation of Combination Drug Therapy for Treatment of Antibiotic-Resistant Inhalation Anthrax in a Murine Model". Antimicrobial Agents and Chemotherapy. 61 (9): e00788-17. doi:10.1128/AAC.00788-17. PMC   5571330 . PMID   28696235.
  8. Hendricks, Katherine A; Wright, Mary E; Shadomy, Sean V; Bradley, John S; Morrow, Meredith G; Pavia, Andy T; Rubinstein, Ethan; Holty, Jon-Erik C; Messonier, Nancy E; Smith, Theresa L; Pesik, Nicki; Treadwell, Tracee A; Bower, William A (February 2014). "Centers for Disease Control and Prevention Expert Panel Meetings on Prevention and Treatment of Anthrax in Adults". Emerging Infectious Diseases. 20 (2): e130687. doi:10.3201/eid2002.130687. PMC   3901462 . PMID   24447897.
  9. "M45 Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria, 3rd Edition". CLSI. Retrieved 14 June 2023.
  10. Steward J, Lever MS, Simpson AJ, Sefton AM, Brooks TJ (July 2004). "Post-exposure prophylaxis of systemic anthrax in mice and treatment with fluoroquinolones". The Journal of Antimicrobial Chemotherapy. 54 (1): 95–9. doi: 10.1093/jac/dkh276 . PMID   15163650.
  11. Chen Y, Succi J, Tenover FC, Koehler TM (February 2003). "Beta-lactamase genes of the penicillin-susceptible Bacillus anthracis Sterne strain". Journal of Bacteriology. 185 (3): 823–30. doi:10.1128/JB.185.3.823-830.2003. PMC   142833 . PMID   12533457.
  12. "CDC - Anthrax Sterne, General Information - NCZVED". www.cdc.gov. Retrieved 2020-11-25.
  13. 1 2 Brossier F, Levy M, Mock M (February 2002). "Anthrax spores make an essential contribution to vaccine efficacy". Infection and Immunity. 70 (2): 661–4. doi: 10.1128/iai.70.2.661-664.2002 . PMC   127709 . PMID   11796596.
  14. Fellows PF, Linscott MK, Ivins BE, Pitt ML, Rossi CA, Gibbs PH, Friedlander AM (November 2001). "Erratum to "Efficacy of a human anthrax vaccine in guinea pigs, rabbits, and rhesus macaques against challenge by Bacillus anthracis isolates of diverse geographical origin" [Vaccine 19 (2001) 3241–3247". Vaccine. 20 (3–4): 635. doi:10.1016/s0264-410x(01)00411-x.
  15. Van Ert MN, Easterday WR, Simonson TS, U'Ren JM, Pearson T, Kenefic LJ, et al. (January 2007). "Strain-specific single-nucleotide polymorphism assays for the Bacillus anthracis Ames strain". Journal of Clinical Microbiology. 45 (1): 47–53. doi:10.1128/JCM.01233-06. PMC   1828967 . PMID   17093023.
  16. Rasko DA, Worsham PL, Abshire TG, Stanley ST, Bannan JD, Wilson MR, et al. (March 2011). "Bacillus anthracis comparative genome analysis in support of the Amerithrax investigation". Proceedings of the National Academy of Sciences of the United States of America. 108 (12): 5027–32. Bibcode:2011PNAS..108.5027R. doi: 10.1073/pnas.1016657108 . PMC   3064363 . PMID   21383169.