Anna Moore | |
---|---|
Education | Cambridge University, The University of London, University of Sydney. |
Employer | Australian National University |
Known for | Space Exploration |
Title | Professor |
Anna Marie Moore is an astronomer who was instrumental in the formation of the Australian Space Agency as part of the expert reference group of the Australian Government. She was nominated as a fellow of the Australian Academy of Technological Sciences and Engineering in 2023 for her contributions to space exploration. [1] She is Director of The Australian National University Institute for Space [2] and the Advanced Instrumentation Technology Centre. [3] [4]
Moore was awarded a BA from Cambridge University, 1994, a Masters of Space Sciences from The University of London, 1995 and PhD in astronomy from the University of Sydney, 2000. [5]
Moore was employed at the Arcetri Observatory from 2004 to 2005, California Institute of Technology, from 2005 to 2017, and the Australian National University from 2017 onwards. She has received funding from various sources including the National Science Foundation, for SGER: United States participation in the 2007 Traverse to Dome A- Optical Sky Brightness and Ground Layer Turbulence Profiling. [6] Moore also has received funding from the NSF for Gattini-UV South Pole camera research [7] and the Australian Research Council for research on the Kunlun Infrared Sky Survey. [8]
Moore is director of InSpace, and established and led the Institute for Space at ANU. [9] At InSpace Director, she has exceeded normal diversity benchmarks by cultivating a workforce that is 75% women in an industry that is traditionally occupied by men. Her initiatives have facilitated the inclusion of female researchers within the InSpace Mission Specialist team and Technical Advisory Groups, two bodies that influence Australia's overarching space strategy. [10]
During her tenure as Director of the Advanced Instrumentation and Technology Centre (AITC) at ANU, she played a role broaden the scope of space testing services for the aerospace sector in both Australia and New Zealand. She also ensured access for the space community to the AITC's National Space Test Facility (NSTF). [10]
By early 2020, during the COVID-induced closures affecting much of Australian business, Moore facilitated the reopening of NSTF's first facility at ANU to open. This action ensured the continual fulfillment of heightened space testing demands from space companies, start-ups, and universities across Australia. [10]
Moore has authored over 100 peer-reviewed publications, with over 3060 citations and an H index of 29 as of 2023. [11] Moore has also written various articles on space for The Conversation, on 'Why space matters' and space exploration in a post-covid world. [12] [13]
The Very Large Telescope (VLT) is an astronomical facility operated since 1998 by the European Southern Observatory, located on Cerro Paranal in the Atacama Desert of northern Chile. It consists of four individual telescopes, each equipped with a primary mirror that measures 8.2 meters in diameter. These optical telescopes, named Antu, Kueyen, Melipal, and Yepun, are generally used separately but can be combined to achieve a very high angular resolution. The VLT array is also complemented by four movable Auxiliary Telescopes (ATs) with 1.8-meter apertures.
The W. M. Keck Observatory is an astronomical observatory with two telescopes at an elevation of 4,145 meters (13,600 ft) near the summit of Mauna Kea in the U.S. state of Hawaii. Both telescopes have 10 m (33 ft) aperture primary mirrors, and, when completed in 1993 and 1996, they were the largest optical reflecting telescopes in the world. They have been the third and fourth largest since 2006.
The Gemini Observatory comprises two 8.1-metre (26.6 ft) telescopes, Gemini North and Gemini South, situated in Hawaii and Chile, respectively. These twin telescopes offer extensive coverage of the northern and southern skies and rank among the most advanced optical/infrared telescopes available to astronomers. (See List of largest optical reflecting telescopes).
The WIYN Observatory is owned and operated by the WIYN Consortium. Its 3.5-meter telescope is the second largest optical telescope at Kitt Peak National Observatory in Arizona. Most of the capital costs for the observatory were provided by the University of Wisconsin–Madison, Indiana University, and Yale University, while the National Optical Astronomy Observatory (NOAO) provides most of the operating services. The NOAO is an institution of the United States; it is the national optical observatory program and supports a collection of ground-based telescopes at Kitt Peak as well as other locations.
The Wide Field/Planetary Camera (WFPC) was a camera installed on the Hubble Space Telescope launched in April 1990 and operated until December 1993. It was one of the instruments on Hubble at launch, but its functionality was severely impaired by the defects of the main mirror optics which afflicted the telescope. However, it produced uniquely valuable high resolution images of relatively bright astronomical objects, allowing for a number of discoveries to be made by HST even in its aberrated condition.
Debra Ann Fischer is an American astronomer who is the Eugene Higgins professor of astronomy at Yale University researching detection and characterization of exoplanets. She has detected hundreds of exoplanets and was part of the team to discover the first known multiple-planet system.
The Giant Magellan Telescope (GMT) is a ground-based, extremely large telescope currently under construction at Las Campanas Observatory in Chile's Atacama Desert. With a primary mirror diameter of 25.4 meters, it is expected to be the largest Gregorian telescope ever built, observing in optical and mid-infrared wavelengths. Commissioning of the telescope is anticipated in the early 2030s.
The 2.3 metre telescope at Siding Spring Observatory is operated by the Australian National University. The Advanced Technology Telescope was constructed during the early 1980s and featured, at the time, bold features and design: an unusually thin mirror, an alt-az mount and co-rotating dome. The optical telescope has Altazimuth mount and a primary mirror with a focal length of f/2.05. It is housed in a box-shaped building which rotates as the telescope tracks objects.
A grism is a combination of a prism and grating arranged so that light at a chosen central wavelength passes straight through. The advantage of this arrangement is that one and the same camera can be used both for imaging and spectroscopy without having to be moved. Grisms are inserted into a camera beam that is already collimated. They then create a dispersed spectrum centered on the object's location in the camera's field of view.
A multi-object spectrometer is a type of optical spectrometer capable of simultaneously acquiring the spectra of multiple separate objects in its field of view. It is used in astronomical spectroscopy and is related to long-slit spectroscopy. This technique became available in the 1980s.
The Cosmic Origins Spectrograph (COS) is a science instrument that was installed on the Hubble Space Telescope during Servicing Mission 4 (STS-125) in May 2009. It is designed for ultraviolet (90–320 nm) spectroscopy of faint point sources with a resolving power of ≈1,550–24,000. Science goals include the study of the origins of large scale structure in the universe, the formation and evolution of galaxies, and the origin of stellar and planetary systems and the cold interstellar medium. COS was developed and built by the Center for Astrophysics and Space Astronomy (CASA-ARL) at the University of Colorado at Boulder and the Ball Aerospace and Technologies Corporation in Boulder, Colorado.
In cosmology, galaxy filaments are the largest known structures in the universe, consisting of walls of galactic superclusters. These massive, thread-like formations can commonly reach 50/h to 80/h megaparsecs —with the largest found to date being the Hercules-Corona Borealis Great Wall at around 3 gigaparsecs (9.8 Gly) in length—and form the boundaries between voids. Due to the accelerating expansion of the universe, the individual clusters of gravitationally bound galaxies that make up galaxy filaments are moving away from each other at an accelerated rate; in the far future they will dissolve.
Harvey Raymond Butcher III is an astronomer who has made significant contributions in observational astronomy and instrumentation which have advanced understanding of the formation of stars and of the universe. He received a B.Sc. in Astrophysics from the California Institute of Technology in 1969, where he contributed to the development of advanced infrared spectrometry applied in the first survey of the sky at infrared wavelengths.
Integral field spectrographs (IFS) combine spectrographic and imaging capabilities in the optical or infrared wavelength domains (0.32 μm – 24 μm) to get from a single exposure spatially resolved spectra in a bi-dimensional region. The name originates from the fact that the measurements result from integrating the light on multiple sub-regions of the field. Developed at first for the study of astronomical objects, this technique is now also used in many other fields, such as bio-medical science and Earth remote sensing. Integral field spectrography is part of the broader category of snapshot hyperspectral imaging techniques, itself a part of hyperspectral imaging.
The Nicholas U. Mayall Telescope, also known as the Mayall 4-meter Telescope, is a four-meter reflector telescope located at the Kitt Peak National Observatory in Arizona and named after Nicholas U. Mayall. It saw first light on February 27, 1973, and was the second-largest telescope in the world at that time. Initial observers included David Crawford, Nicholas Mayall, and Arthur Hoag. It was dedicated on June 20, 1973 after Mayall's retirement as director. The mirror has an f/2.7 hyperboloidal shape. It is made from a two-foot thick fused quartz disk that is supported in an advanced-design mirror cell. The prime focus has a field of view six times larger than that of the Hale reflector. It is host to the Dark Energy Spectroscopic Instrument. The identical Víctor M. Blanco Telescope was later built at Cerro Tololo Inter-American Observatory, in Chile.
Fine Guidance Sensor and Near Infrared Imager and Slitless Spectrograph (FGS-NIRISS) is an instrument on the James Webb Space Telescope (JWST) that combines a Fine Guidance Sensor and a science instrument, a near-infrared imager and a spectrograph. The FGS/NIRISS was designed by the Canadian Space Agency (CSA) and built by Honeywell as part of an international project to build a large infrared space telescope with the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). FGS-NIRISS observes light from the wavelengths of 0.8 to 5.0 microns. The instrument has four different observing modes.
The Infrared Array Camera (IRAC) was an infrared camera system on the Spitzer Space Telescope which operated in the mid-infrared spectrum. It was composed of four detectors that operated simultaneously at different wavelengths; all four were in use until 2009 May 15 when the Spitzer cryostat ran out of liquid helium. After then, the spacecraft operated in a warm extended mission, in which two of the four detectors remained functional, until the Spitzer mission was terminated on 2020 January 30.
NGC 3675 is a spiral galaxy located in the constellation Ursa Major. It is located at a distance of circa 50 million light years from Earth, which, given its apparent dimensions, means that NGC 3675 is about 100,000 light years across. It was discovered by William Herschel in 1788.
Erika Tobiason Hamden is an American astrophysicist and associate professor at the University of Arizona and Steward Observatory. Her research focuses on developing ultraviolet (UV) detector technology, ultraviolet–visible spectroscopy (UV/VIS) instrumentation and spectroscopy, and galaxy evolution. She served as the project scientist and project manager of a UV multi-object spectrograph, FIREBall-2, that is designed to observe the circumgalactic medium (CGM). She is a 2019 TED fellow.