Anomaly matching condition

Last updated

In quantum field theory, the anomaly matching condition [1] by Gerard 't Hooft states that the calculation of any chiral anomaly for the flavor symmetry must not depend on what scale is chosen for the calculation if it is done by using the degrees of freedom of the theory at some energy scale. It is also known as the 't Hooft condition and the 't Hooft UV-IR anomaly matching condition. [lower-alpha 1]

Contents

't Hooft anomalies

There are two closely related but different types of obstructions to formulating a quantum field theory that are both called anomalies: chiral, or Adler–Bell–Jackiw anomalies, and 't Hooft anomalies.

If we say that the symmetry of the theory has a 't Hooft anomaly, it means that the symmetry is exact as a global symmetry of the quantum theory, but there is some impediment to using it as a gauge in the theory. [2]

As an example of a 't Hooft anomaly, we consider quantum chromodynamics with massless fermions: This is the gauge theory with massless Dirac fermions. This theory has the global symmetry , which is often called the flavor symmetry, and this has a 't Hooft anomaly.

Anomaly matching for continuous symmetry

The anomaly matching condition by G. 't Hooft proposes that a 't Hooft anomaly of continuous symmetry can be computed both in the high-energy and low-energy degrees of freedom (“UV” and “IR” [lower-alpha 1] ) and give the same answer.

Example

For example, consider the quantum chromodynamics with Nf massless quarks. This theory has the flavor symmetry [lower-alpha 2] This flavor symmetry becomes anomalous when the background gauge field is introduced. One may use either the degrees of freedom at the far low energy limit (far “IR” [lower-alpha 1] ) or the degrees of freedom at the far high energy limit (far “UV” [lower-alpha 1] ) in order to calculate the anomaly. In the former case one should only consider massless fermions or Nambu–Goldstone bosons which may be composite particles, while in the latter case one should only consider the elementary fermions of the underlying short-distance theory. In both cases, the answer must be the same. Indeed, in the case of QCD, the chiral symmetry breaking occurs and the Wess–Zumino–Witten term for the Nambu–Goldstone bosons reproduces the anomaly. [3]

Proof

One proves this condition by the following procedure: [1] we may add to the theory a gauge field which couples to the current related with this symmetry, as well as chiral fermions which couple only to this gauge field, and cancel the anomaly (so that the gauge symmetry will remain non-anomalous, as needed for consistency).

In the limit where the coupling constants we have added go to zero, one gets back to the original theory, plus the fermions we have added; the latter remain good degrees of freedom at every energy scale, as they are free fermions at this limit. The gauge symmetry anomaly can be computed at any energy scale, and must always be zero, so that the theory is consistent. One may now get the anomaly of the symmetry in the original theory by subtracting the free fermions we have added, and the result is independent of the energy scale.

Alternative proof

Another way to prove the anomaly matching for continuous symmetries is to use the anomaly inflow mechanism. [4] To be specific, we consider four-dimensional spacetime in the following.

For global continuous symmetries , we introduce the background gauge field and compute the effective action . If there is a 't Hooft anomaly for , the effective action is not invariant under the gauge transformation on the background gauge field and it cannot be restored by adding any four-dimensional local counter terms of . Wess–Zumino consistency condition [5] shows that we can make it gauge invariant by adding the five-dimensional Chern–Simons action.

With the extra dimension, we can now define the effective action by using the low-energy effective theory that only contains the massless degrees of freedom by integrating out massive fields. Since it must be again gauge invariant by adding the same five-dimensional Chern–Simons term, the 't Hooft anomaly does not change by integrating out massive degrees of freedom.

See also

Notes

  1. 1 2 3 4 In the context of quantum field theory, “UV” actually means the high-energy limit of a theory, and “IR” means the low-energy limit, by analogy to the upper and lower peripheries of visible light, but not actually meaning either light or those particular energies.
  2. . The axial U(1) symmetry is broken by the chiral anomaly or instantons so is not included in the example.

Related Research Articles

In theoretical physics, a chiral anomaly is the anomalous nonconservation of a chiral current. In everyday terms, it is equivalent to a sealed box that contained equal numbers of left and right-handed bolts, but when opened was found to have more left than right, or vice versa.

<span class="mw-page-title-main">Anomaly (physics)</span> Asymmetry of classical and quantum action

In quantum physics an anomaly or quantum anomaly is the failure of a symmetry of a theory's classical action to be a symmetry of any regularization of the full quantum theory. In classical physics, a classical anomaly is the failure of a symmetry to be restored in the limit in which the symmetry-breaking parameter goes to zero. Perhaps the first known anomaly was the dissipative anomaly in turbulence: time-reversibility remains broken at the limit of vanishing viscosity.

<span class="mw-page-title-main">Supergravity</span> Modern theory of gravitation that combines supersymmetry and general relativity

In theoretical physics, supergravity is a modern field theory that combines the principles of supersymmetry and general relativity; this is in contrast to non-gravitational supersymmetric theories such as the Minimal Supersymmetric Standard Model. Supergravity is the gauge theory of local supersymmetry. Since the supersymmetry (SUSY) generators form together with the Poincaré algebra a superalgebra, called the super-Poincaré algebra, supersymmetry as a gauge theory makes gravity arise in a natural way.

<span class="mw-page-title-main">Higgs mechanism</span> Mechanism that explains the generation of mass for gauge bosons

In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other being fermions) would be considered massless, but measurements show that the W+, W, and Z0 bosons actually have relatively large masses of around 80 GeV/c2. The Higgs field resolves this conundrum. The simplest description of the mechanism adds a quantum field (the Higgs field) which permeates all of space to the Standard Model. Below some extremely high temperature, the field causes spontaneous symmetry breaking during interactions. The breaking of symmetry triggers the Higgs mechanism, causing the bosons it interacts with to have mass. In the Standard Model, the phrase "Higgs mechanism" refers specifically to the generation of masses for the W±, and Z weak gauge bosons through electroweak symmetry breaking. The Large Hadron Collider at CERN announced results consistent with the Higgs particle on 14 March 2013, making it extremely likely that the field, or one like it, exists, and explaining how the Higgs mechanism takes place in nature. The view of the Higgs mechanism as involving spontaneous symmetry breaking of a gauge symmetry is technically incorrect since by Elitzur's theorem gauge symmetries can never be spontaneously broken. Rather, the Fröhlich–Morchio–Strocchi mechanism reformulates the Higgs mechanism in an entirely gauge invariant way, generally leading to the same results.

<span class="mw-page-title-main">Yang–Mills theory</span> Physical theory unifying the electromagnetic, weak and strong interactions

In mathematical physics, Yang–Mills theory is a gauge theory based on a special unitary group SU(n), or more generally any compact, reductive Lie algebra. Yang–Mills theory seeks to describe the behavior of elementary particles using these non-abelian Lie groups and is at the core of the unification of the electromagnetic force and weak forces (i.e. U(1) × SU(2)) as well as quantum chromodynamics, the theory of the strong force (based on SU(3)). Thus it forms the basis of our understanding of the Standard Model of particle physics.

A chiral phenomenon is one that is not identical to its mirror image. The spin of a particle may be used to define a handedness, or helicity, for that particle, which, in the case of a massless particle, is the same as chirality. A symmetry transformation between the two is called parity transformation. Invariance under parity transformation by a Dirac fermion is called chiral symmetry.

In theoretical physics, a gauge anomaly is an example of an anomaly: it is a feature of quantum mechanics—usually a one-loop diagram—that invalidates the gauge symmetry of a quantum field theory; i.e. of a gauge theory.

<span class="mw-page-title-main">Mixed anomaly</span> Gauge anomaly from multiple gauge groups

In theoretical physics, a mixed anomaly is an example of an anomaly: it is an effect of quantum mechanics — usually a one-loop diagram — that implies that the classically valid general covariance and gauge symmetry of a theory of general relativity combined with gauge fields and fermionic fields cannot be preserved simultaneously in the quantum theory.

In lattice field theory, fermion doubling occurs when naively putting fermionic fields on a lattice, resulting in more fermionic states than expected. For the naively discretized Dirac fermions in Euclidean dimensions, each fermionic field results in identical fermion species, referred to as different tastes of the fermion. The fermion doubling problem is intractably linked to chiral invariance by the Nielsen–Ninomiya theorem. Most strategies used to solve the problem require using modified fermions which reduce to the Dirac fermion only in the continuum limit.

In quantum field theory, the theta vacuum is the semi-classical vacuum state of non-abelian Yang–Mills theories specified by the vacuum angleθ that arises when the state is written as a superposition of an infinite set of topologically distinct vacuum states. The dynamical effects of the vacuum are captured in the Lagrangian formalism through the presence of a θ-term which in quantum chromodynamics leads to the fine tuning problem known as the strong CP problem. It was discovered in 1976 by Curtis Callan, Roger Dashen, and David Gross, and independently by Roman Jackiw and Claudio Rebbi.

In quantum chromodynamics with massless flavors, if the number of flavors, Nf, is sufficiently small, the theory can flow to an interacting conformal fixed point of the renormalization group. If the value of the coupling at that point is less than one, then the fixed point is called a Banks–Zaks fixed point. The existence of the fixed point was first reported in 1974 by Belavin and Migdal and by Caswell, and later used by Banks and Zaks in their analysis of the phase structure of vector-like gauge theories with massless fermions. The name Caswell–Banks–Zaks fixed point is also used.

The QCD vacuum is the quantum vacuum state of quantum chromodynamics (QCD). It is an example of a non-perturbative vacuum state, characterized by non-vanishing condensates such as the gluon condensate and the quark condensate in the complete theory which includes quarks. The presence of these condensates characterizes the confined phase of quark matter.

<span class="mw-page-title-main">Mathematical formulation of the Standard Model</span> Mathematics of a particle physics model

This article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as describing the fundamental set of particles – the leptons, quarks, gauge bosons and the Higgs boson.

In quantum field theory, the Nambu–Jona-Lasinio model is a complicated effective theory of nucleons and mesons constructed from interacting Dirac fermions with chiral symmetry, paralleling the construction of Cooper pairs from electrons in the BCS theory of superconductivity. The "complicatedness" of the theory has become more natural as it is now seen as a low-energy approximation of the still more basic theory of quantum chromodynamics, which does not work perturbatively at low energies.

In quantum field theory, Seiberg duality, conjectured by Nathan Seiberg in 1994, is an S-duality relating two different supersymmetric QCDs. The two theories are not identical, but they agree at low energies. More precisely under a renormalization group flow they flow to the same IR fixed point, and so are in the same universality class. It is an extension to nonabelian gauge theories with N=1 supersymmetry of Montonen–Olive duality in N=4 theories and electromagnetic duality in abelian theories.

In theoretical physics, there are many theories with supersymmetry (SUSY) which also have internal gauge symmetries. Supersymmetric gauge theory generalizes this notion.

In theoretical physics, the Wess–Zumino model has become the first known example of an interacting four-dimensional quantum field theory with linearly realised supersymmetry. In 1974, Julius Wess and Bruno Zumino studied, using modern terminology, dynamics of a single chiral superfield whose cubic superpotential leads to a renormalizable theory.

The Gross–Neveu (GN) model is a quantum field theory model of Dirac fermions interacting via four-fermion interactions in 1 spatial and 1 time dimension. It was introduced in 1974 by David Gross and André Neveu as a toy model for quantum chromodynamics (QCD), the theory of strong interactions. It shares several features of the QCD: GN theory is asymptotically free thus at strong coupling the strength of the interaction gets weaker and the corresponding function of the interaction coupling is negative, the theory has a dynamical mass generation mechanism with chiral symmetry breaking, and in the large number of flavor limit, GN theory behaves as t'Hooft's large limit in QCD.

In particle physics, chiral symmetry breaking is the spontaneous symmetry breaking of a chiral symmetry – usually by a gauge theory such as quantum chromodynamics, the quantum field theory of the strong interaction. Yoichiro Nambu was awarded the 2008 Nobel prize in physics for describing this phenomenon.

In theoretical physics, more specifically in quantum field theory and supersymmetry, supersymmetric Yang–Mills, also known as super Yang–Mills and abbreviated to SYM, is a supersymmetric generalization of Yang–Mills theory, which is a gauge theory that plays an important part in the mathematical formulation of forces in particle physics.

References

  1. 1 2 't Hooft, G. (1980). "Naturalness, Chiral Symmetry, and Spontaneous Chiral Symmetry Breaking". In 't Hooft, G. (ed.). Recent Developments in Gauge Theories. Plenum Press. ISBN   978-0-306-40479-5.
  2. Kapustin, A.; Thorngren, R. (2014). "Anomalous discrete symmetries in three dimensions and group cohomology". Physical Review Letters. 112 (23): 231602. arXiv: 1403.0617 . Bibcode:2014PhRvL.112w1602K. doi:10.1103/PhysRevLett.112.231602. PMID   24972194. S2CID   35171032.
  3. Frishman, Y.; Scwimmer, A.; Banks, T.; Yankielowicz, S. (1981). "The axial anomaly and the bound state spectrum in confining theories". Nuclear Physics B. 177 (1): 157–171. Bibcode:1981NuPhB.177..157F. doi:10.1016/0550-3213(81)90268-6.
  4. Callan, Jr., C.G.; Harvey, J.A. (1985). "Anomalies and fermion zero modes on strings and domain walls". Nuclear Physics B. 250 (1–4): 427–436. Bibcode:1985NuPhB.250..427C. doi:10.1016/0550-3213(85)90489-4.
  5. Wess, J.; Zumino, B. (1971). "Consequences of anomalous ward identities". Physics Letters B. 37 (1): 95. Bibcode:1971PhLB...37...95W. doi:10.1016/0370-2693(71)90582-X.