Anthony Mahowald (born November 24, 1932) is a molecular genetics and cellular biologist who served as the department chair of the molecular genetics and cellular biology department at the University of Chicago. [1] His lab focused on the fruit fly Drosophila melanogaster , specifically focusing on controlling the genetic aspects of major developmental events. [1] His major research breakthroughs included the study of the stem cell niche, endocycles, and various types of actin.
Anthony Mahowald is married and has three children. [2]
Anthony Mahowald was born in Albany, Minnesota, on November 24, 1932. [3] Mahowald received a bachelor's degree from Spring Hill College in Mobile, Alabama. [3] Following his undergraduate studies, Mahowald earned his Ph.D. from Johns Hopkins University in 1962. [3] At Johns Hopkins, Mahowald studied the structure of pole cells and polar granules in Drosophila melanogaster. [4] Both his undergraduate and doctoral degrees were in the field of biology.
Mahowald has worked in many universities in his academic career. From 1972 to 1982, he started his career at Marquette University, while also working for the Institute of Cancer Research in Philadelphia, Pennsylvania. [3] Then, he accepted a position at Indiana University from 1972 to 1982. [3] He then moved on to Case Western Reserve University from 1982 to 1990. [3] [5] Finally, from 1990 to 2002, Mahowald was employed at the University of Chicago as the department chair for molecular genetics and cellular biology. [3] In 2002, he retired from academia and currently works as an emeritus at the University of Chicago. [1]
Mahowald is a member of a wide range of prestigious organizations. He is a part of the American Association for the Advancement of Science, Society of Scholars at Johns Hopkins University, American Academy of Arts and Sciences, the Woodrow Wilson Foundation, the Genetics Society of America, the American Society of Cell Biology, the Society of Developmental Biology, and the National Academy of Science. [3]
The majority of his research centered around the common fruit fly and other insects for developmental and genetic studies. [6] [ failed verification ]
One of Malhowald's groundbreaking articles involve the study of the stem cell niche, which is a specialized environment where adult stem cells reside in some insects and amphibians. [7] This area helps to keep stem cells in an undifferentiated state through short-range signaling. [8] Mahowald discovered that this area, and specifically the e-cadherin-based stem cell adhesion, is vital in maintaining the Drosophila germline stem cells. [8] These stem cells are important to the reproduction of Drosophila as they turn into sperm cells. In Drosophila testicles, the Leukocyte-antigen-related (LAR) receptor tyrosine phosphatase targets selection and synapse formation with nerve cells. [8] After testing, it was discovered that the receptor expression is increased in the analysis of testicles containing higher numbers of early germ cells and cyst cells. [8] After analysis of this data and further testing of his own, Mahowald discovered that the LAR expressed in the testicles retains germline stem cells at the niche through the increased E-cadherin-based adhesion. [8]
Some of Mahowald's most recent work centers around the study of endocycles. These are cell cycles that do not have a mitotic phase. In other words, cells continuously duplicate their genetic information without division into two cells. [9] This creates very large cells, but their genetic information cannot be organized and separated into chromosomes due to inhibition of cyclin-dependent kinase activity. Mahowald discovered pre-mitotic endocycles in rectal non-cancerous polyploid cells in Drosophila. [10] The endocycling creates a polyploid cell, and these polyploid have high error-rates, suggesting that there will be an accumulation of cells with incorrect number of chromosomes. [9] He argues that pre-mitotic endocycling is essential for non-cancerous polyploid development, specifically in papillary development. [10] While organisms would die from the accumulation of aneuploid, Mahowald found that, in this instance, significant changes in survival rates were not observed. [10] Thus, he and his team directly disproved previous thoughts that aneuploidy decreases survivability in various insects, especially flies. [11]
Mahowald also studied the actin and the various genes that code for very similar types of actin in an organism. Mahowald was concerned as to why organisms have multiple, very similar, genes that encode for the same proteins with only a few amino acids different. To attempt to answer this question, Mahowald and team isolated two actin genes, Act42A and Act5C, with only two amino acids being different between the two genes, and both are present in all cells in the Drosophila during development. [12]
Other researchers had established that multiple isoforms are crucial for development. It was determined that the small differences make actin filaments that do have different functions, such as cytoplasmic functions and muscular functions. [13] Indeed, Mahowald established that there is a need for multiple forms of actin due to the large quantity of actin needed in a cell, along with the fact that some cells have different microfilament-based needs. However, he set out to determine if these actin filaments could be interchanged due to their similarity in structure.
Mahowald focused on cytoplasmic actin genes instead of muscular actin due to the multifunctional nature of cytoplasmic actin when compared to muscular actin. [14] Using genomic DNA and Reverse Transcription PCR Sequences, Mahowald determined that these amino acid substitutions in Act5C and Act42A did not occur in regions of the actin molecule where actin binding proteins interact. [12] By using the Drosophila as an easily controlled genetic system, Mahowald and his team discovered that mutations in the Act5C gene caused organism death, indicating that Act5C did have an important and isolated function. [12] However, a hybrid gene containing Act42A prevented organism death, indicating that the amino acid differences between the two isoforms are not significant. [12] Despite all of this, Mahowald concluded that tissues rich in Act5C gene expression cannot adequately function with only the Act42A isoform. [12] In other words, while very similar in genetic sequencing, the various isoforms of actin are important to the survivability and functionality of the Drosophila.
Developmental biology is the study of the process by which animals and plants grow and develop. Developmental biology also encompasses the biology of regeneration, asexual reproduction, metamorphosis, and the growth and differentiation of stem cells in the adult organism.
Drosophila is a genus of fly, belonging to the family Drosophilidae, whose members are often called "small fruit flies" or pomace flies, vinegar flies, or wine flies, a reference to the characteristic of many species to linger around overripe or rotting fruit. They should not be confused with the Tephritidae, a related family, which are also called fruit flies ; tephritids feed primarily on unripe or ripe fruit, with many species being regarded as destructive agricultural pests, especially the Mediterranean fruit fly.
In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, mitosis, or meiosis or other types of damage to DNA, which then may undergo error-prone repair, cause an error during other forms of repair, or cause an error during replication. Mutations may also result from insertion or deletion of segments of DNA due to mobile genetic elements.
In biology and genetics, the germline is the population of a multicellular organism's cells that develop into germ cells. In other words, they are the cells that form gametes, which can come together to form a zygote. They differentiate in the gonads from primordial germ cells into gametogonia, which develop into gametocytes, which develop into the final gametes. This process is known as gametogenesis.
Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of over 100 μM; its mass is roughly 42 kDa, with a diameter of 4 to 7 nm.
Gene duplication is a major mechanism through which new genetic material is generated during molecular evolution. It can be defined as any duplication of a region of DNA that contains a gene. Gene duplications can arise as products of several types of errors in DNA replication and repair machinery as well as through fortuitous capture by selfish genetic elements. Common sources of gene duplications include ectopic recombination, retrotransposition event, aneuploidy, polyploidy, and replication slippage.
Escargot (esg) is a transcription factor expressed in Drosophila melanogaster. It is responsible for the maintenance of intestinal stem cells and is used as a marker for those types of cells in Drosophila. Apart from its expression in the gut, esg is also expressed in expressed in germline stem cells and cyst stem cells of the testis and, during development, in neural stem cells and imaginal disks.
Mosaicism or genetic mosaicism is a condition in which a multicellular organism possesses more than one genetic line as the result of genetic mutation. This means that various genetic lines resulted from a single fertilized egg. Mosaicism is one of several possible causes of chimerism, wherein a single organism is composed of cells with more than one distinct genotype.
Intragenomic conflict refers to the evolutionary phenomenon where genes have phenotypic effects that promote their own transmission in detriment of the transmission of other genes that reside in the same genome. The selfish gene theory postulates that natural selection will increase the frequency of those genes whose phenotypic effects cause their transmission to new organisms, and most genes achieve this by cooperating with other genes in the same genome to build an organism capable of reproducing and/or helping kin to reproduce. The assumption of the prevalence of intragenomic cooperation underlies the organism-centered concept of inclusive fitness. However, conflict among genes in the same genome may arise both in events related to reproduction and altruism.
Endoreduplication is replication of the nuclear genome in the absence of mitosis, which leads to elevated nuclear gene content and polyploidy. Endoreduplication can be understood simply as a variant form of the mitotic cell cycle (G1-S-G2-M) in which mitosis is circumvented entirely, due to modulation of cyclin-dependent kinase (CDK) activity. Examples of endoreduplication characterised in arthropod, mammalian, and plant species suggest that it is a universal developmental mechanism responsible for the differentiation and morphogenesis of cell types that fulfill an array of biological functions. While endoreduplication is often limited to specific cell types in animals, it is considerably more widespread in plants, such that polyploidy can be detected in the majority of plant tissues. Polyploidy and aneuploidy are common phenomena in cancer cells. Given that oncogenesis and endoreduplication likely involve subversion of common cell cycle regulatory mechanisms, a thorough understanding of endoreduplication may provide important insights for cancer biology.
Mitotic recombination is a type of genetic recombination that may occur in somatic cells during their preparation for mitosis in both sexual and asexual organisms. In asexual organisms, the study of mitotic recombination is one way to understand genetic linkage because it is the only source of recombination within an individual. Additionally, mitotic recombination can result in the expression of recessive alleles in an otherwise heterozygous individual. This expression has important implications for the study of tumorigenesis and lethal recessive alleles. Mitotic homologous recombination occurs mainly between sister chromatids subsequent to replication. Inter-sister homologous recombination is ordinarily genetically silent. During mitosis the incidence of recombination between non-sister homologous chromatids is only about 1% of that between sister chromatids.
Stem-cell niche refers to a microenvironment, within the specific anatomic location where stem cells are found, which interacts with stem cells to regulate cell fate. The word 'niche' can be in reference to the in vivo or in vitro stem-cell microenvironment. During embryonic development, various niche factors act on embryonic stem cells to alter gene expression, and induce their proliferation or differentiation for the development of the fetus. Within the human body, stem-cell niches maintain adult stem cells in a quiescent state, but after tissue injury, the surrounding micro-environment actively signals to stem cells to promote either self-renewal or differentiation to form new tissues. Several factors are important to regulate stem-cell characteristics within the niche: cell–cell interactions between stem cells, as well as interactions between stem cells and neighbouring differentiated cells, interactions between stem cells and adhesion molecules, extracellular matrix components, the oxygen tension, growth factors, cytokines, and the physicochemical nature of the environment including the pH, ionic strength and metabolites, like ATP, are also important. The stem cells and niche may induce each other during development and reciprocally signal to maintain each other during adulthood.
Dynactin subunit 1 is a protein that in humans is encoded by the DCTN1 gene.
Dynactin is a 23 subunit protein complex that acts as a co-factor for the microtubule motor cytoplasmic dynein-1. It is built around a short filament of actin related protein-1 (Arp1).
Myosin-10 also known as myosin heavy chain 10 or non-muscle myosin IIB (NM-IIB) is a protein that in humans is encoded by the MYH10 gene. Non-muscle myosins are expressed in a wide variety of tissues, but NM-IIB is the only non-muscle myosin II isoform expressed in cardiac muscle, where it localizes to adherens junctions within intercalated discs. NM-IIB is essential for normal development of cardiac muscle and for integrity of intercalated discs. Mutations in MYH10 have been identified in patients with left atrial enlargement.
Allan C. Spradling is an American scientist and principal investigator at the Carnegie Institution for Science and the Howard Hughes Medical Institute who studies egg development in the model organism, Drosophila melanogaster, a fruit fly. He is considered a leading researcher in the developmental genetics of the fruit fly egg and has developed a number of techniques in his career that have led to greater understanding of fruit fly genetics including contributions to sequencing its genome. He is also an adjunct professor at Johns Hopkins University and at the Johns Hopkins University School of Medicine.
Norbert Perrimon is a French geneticist and developmental biologist. He is the James Stillman Professor of Developmental Biology in the Department of Genetics at Harvard Medical School, an Investigator at the Howard Hughes Medical Institute, and an Associate of the Broad Institute. He is known for developing a number of techniques for used in genetic research with Drosophila melanogaster, as well as specific substantive contributions to signal transduction, developmental biology and physiology.
Oogonial stem cells (OSCs), also known as egg precursor cells or female germline cells, are diploid germline cells with stem cell characteristics: the ability to renew and differentiate into other cell types, different from their tissue of origin. Present in invertebrates and some lower vertebrate species, they have been extensively studied in Caenorhabditis elegans, Drosophila melanogaster. OSCs allow the production of new female reproductive cells (oocytes) by the process of oogenesis during an organism's reproductive life.
Renata Homem de Gouveia Xavier de Basto is a researcher in cell and developmental biology. She is currently a team leader at the Institut Curie in Paris. She is also the deputy director of the CNRS research Unit UMR144 'Cell biology and cancer' at the Institut Curie which, comprises 14 research teams.
The germ cell nest forms in the ovaries during their development. The nest consists of multiple interconnected oogonia formed by incomplete cell division. The interconnected oogonia are surrounded by somatic cells called granulosa cells. Later on in development, the germ cell nests break down through invasion of granulosa cells. The result is individual oogonia surrounded by a single layer of granulosa cells. There is also a comparative germ cell nest structure in the developing spermatogonia, with interconnected intracellular cytoplasmic bridges.