Antonio Giorgilli (born 1949) is an Italian mathematical physicist, [1] known for his work on the perturbative theory of Hamiltonian systems with applications to studies of orbital stability for major and minor planets.
At the University of Milan, he graduated in March 1974 in physics with a Laurea thesis on normal modes for nonlinear Hamiltonian systems and then held junior academic appointments in the physics department there. He taught physics at the University of Calabria for the two academic years 1977 to 1979 and then at the University of Milan for the academic year 1978–1979. At the Computing Center of the University of Milan, he was appointed, in July 1979, Deputy Director and then, in January 1980, Technical Director, maintaining this office until March 1982. From 1983 to 1998 he served as a tenured associate professor at the University of Milan's mathematical physics group. In October 1998 he became an associate professor at the newly established University of Milan-Bicocca, where he was promoted to full professor in November 2000. In October 2005 he moved to the University of Milan's department of mathematics, as a full professor. Since november 2019 he has been retired. [2]
In 1998 Giorgilli was an Invited Speaker of the International Congress of Mathematicians in Berlin. [3] He is a member of Istituto Lombardo Accademia di Scienze e Lettere. [2] The minor planet 27855 Giorgilli, discovered in 1995, is named in his honor.
The Kolmogorov–Arnold–Moser (KAM) theorem is a result in dynamical systems about the persistence of quasiperiodic motions under small perturbations. The theorem partly resolves the small-divisor problem that arises in the perturbation theory of classical mechanics.
In mathematics and applied mathematics, perturbation theory comprises methods for finding an approximate solution to a problem, by starting from the exact solution of a related, simpler problem. A critical feature of the technique is a middle step that breaks the problem into "solvable" and "perturbative" parts. In regular perturbation theory, the solution is expressed as a power series in a small parameter . The first term is the known solution to the solvable problem. Successive terms in the series at higher powers of usually become smaller. An approximate 'perturbation solution' is obtained by truncating the series, often keeping only the first two terms, the solution to the known problem and the 'first order' perturbation correction.
Celestial mechanics is the branch of astronomy that deals with the motions of objects in outer space. Historically, celestial mechanics applies principles of physics to astronomical objects, such as stars and planets, to produce ephemeris data.
In mathematics, the Lyapunov exponent or Lyapunov characteristic exponent of a dynamical system is a quantity that characterizes the rate of separation of infinitesimally close trajectories. Quantitatively, two trajectories in phase space with initial separation vector diverge at a rate given by
Quantum chaos is a branch of physics focused on how chaotic classical dynamical systems can be described in terms of quantum theory. The primary question that quantum chaos seeks to answer is: "What is the relationship between quantum mechanics and classical chaos?" The correspondence principle states that classical mechanics is the classical limit of quantum mechanics, specifically in the limit as the ratio of the Planck constant to the action of the system tends to zero. If this is true, then there must be quantum mechanisms underlying classical chaos. If quantum mechanics does not demonstrate an exponential sensitivity to initial conditions, how can exponential sensitivity to initial conditions arise in classical chaos, which must be the correspondence principle limit of quantum mechanics?
In physics, symmetry breaking is a phenomenon where a disordered but symmetric state collapses into an ordered, but less symmetric state. This collapse is often one of many possible bifurcations that a particle can take as it approaches a lower energy state. Due to the many possibilities, an observer may assume the result of the collapse to be arbitrary. This phenomenon is fundamental to quantum field theory (QFT), and further, contemporary understandings of physics. Specifically, it plays a central role in the Glashow–Weinberg–Salam model which forms part of the Standard model modelling the electroweak sector.
Jürgen Kurt Moser was a German-American mathematician, honored for work spanning over four decades, including Hamiltonian dynamical systems and partial differential equations.
In mathematics, integrability is a property of certain dynamical systems. While there are several distinct formal definitions, informally speaking, an integrable system is a dynamical system with sufficiently many conserved quantities, or first integrals, that its motion is confined to a submanifold of much smaller dimensionality than that of its phase space.
Nikolay Nikolayevich Bogolyubov was a Soviet, Ukrainian and Russian mathematician and theoretical physicist known for a significant contribution to quantum field theory, classical and quantum statistical mechanics, and the theory of dynamical systems; he was the recipient of the 1992 Dirac Medal for his works and studies.
Nikolai Nikolaevich Nekhoroshev was a prominent Soviet Russian mathematician specializing in classical mechanics and dynamical systems. His research concerned Hamiltonian mechanics, perturbation theory, celestial mechanics, integrable systems, dynamical systems, the quasiclassical approximation, and singularity theory. He proved, in particular, a stability result in KAM-theory stating that, under certain conditions, solutions of nearly integrable systems stay close to invariant tori for exponentially long times.
In mathematical physics, de Sitter invariant special relativity is the speculative idea that the fundamental symmetry group of spacetime is the indefinite orthogonal group SO(4,1), that of de Sitter space. In the standard theory of general relativity, de Sitter space is a highly symmetrical special vacuum solution, which requires a cosmological constant or the stress–energy of a constant scalar field to sustain.
The Nekhoroshev estimates are an important result in the theory of Hamiltonian systems concerning the long-time stability of solutions of integrable systems under a small perturbation of the Hamiltonian. The first paper on the subject was written by Nikolay Nekhoroshev in 1971.
In applied mathematics, Arnold diffusion is the phenomenon of instability of nearly-integrable Hamiltonian systems. The phenomenon is named after Vladimir Arnold who was the first to publish a result in the field in 1964. More precisely, Arnold diffusion refers to results asserting the existence of solutions to nearly-integrable Hamiltonian systems that exhibit a significant change in the action variables.
In physics, the n-body problem is the problem of predicting the individual motions of a group of celestial objects interacting with each other gravitationally. Solving this problem has been motivated by the desire to understand the motions of the Sun, Moon, planets, and visible stars. In the 20th century, understanding the dynamics of globular cluster star systems became an important n-body problem. The n-body problem in general relativity is considerably more difficult to solve due to additional factors like time and space distortions.
Lars Håkan Eliasson is a Swedish mathematician.
Time-translation symmetry or temporal translation symmetry (TTS) is a mathematical transformation in physics that moves the times of events through a common interval. Time-translation symmetry is the law that the laws of physics are unchanged under such a transformation. Time-translation symmetry is a rigorous way to formulate the idea that the laws of physics are the same throughout history. Time-translation symmetry is closely connected, via Noether's theorem, to conservation of energy. In mathematics, the set of all time translations on a given system form a Lie group.
Mathematical Methods of Classical Mechanics is a textbook by mathematician Vladimir I. Arnold. It was originally written in Russian, and later translated into English by A. Weinstein and K. Vogtmann. It is aimed at graduate students.
Zhihong "Jeff" Xia is a Chinese-American mathematician.
Luigi Chierchia is an Italian mathematician, specializing in nonlinear differential equations, mathematical physics, and dynamical systems.
DmitriiValerevich Treschev is a Russian mathematician and mathematical physicist, specializing in dynamical systems of classical mechanics.