Aquanator

Last updated

The Aquanator is a small-scale tidal-power device, a device which uses rows of hydrofoils to generate electricity from water currents. It was invented by Australian inventor Michael Perry.

Contents

History

The Aquanator invention was announced in 2004. A contract to test the device was signed with Country Energy on 26 September 2004. [1]

Its test site was located at 38°30′59″S145°21′53″E / 38.5163°S 145.3648°E / -38.5163; 145.3648 . In beginning of 2006 it was connected to grid. [2] However, the device test site was decommissioned in May 2008 by its owner Atlantis Resources. [3]

Description

The Aquanator used ocean current to produce electricity. It was intended to generate power even with a small flow of 1.5 knots. [4] The test device had a capacity of 5 kW. The aquanator's slow moving hydrofoil design was meant to provide a green energy source which would not harm ocean life as faster moving turbines might. [5]

Economy

The aquanator was meant to be cheaper than diesel fuels, with costs about the same amount as wind power and will be one sixth the price of diesel-powered systems. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Electricity generation</span> Process of generating electrical power

Electricity generation is the process of generating electric power from sources of primary energy. For utilities in the electric power industry, it is the stage prior to its delivery to end users or its storage.

<span class="mw-page-title-main">Power station</span> Facility generating electric power

A power station, also referred to as a power plant and sometimes generating station or generating plant, is an industrial facility for the generation of electric power. Power stations are generally connected to an electrical grid.

<span class="mw-page-title-main">Tidal power</span> Technology to convert the energy from tides into useful forms of power

Tidal power or tidal energy is harnessed by converting energy from tides into useful forms of power, mainly electricity using various methods.

<span class="mw-page-title-main">Wave power</span> Transport of energy by wind waves, and the capture of that energy to do useful work

Wave power is the capture of energy of wind waves to do useful work – for example, electricity generation, water desalination, or pumping water. A machine that exploits wave power is a wave energy converter (WEC).

Energy harvesting is the process by which energy is derived from external sources, then stored for use by small, wireless autonomous devices, like those used in wearable electronics, condition monitoring, and wireless sensor networks.

<span class="mw-page-title-main">Environmental technology</span> Technical and technological processes for protection of the environment

Environmental technology (envirotech) or green technology (greentech), also known as clean technology (cleantech), is the application of one or more of environmental science, green chemistry, environmental monitoring and electronic devices to monitor, model and conserve the natural environment and resources, and to curb the negative impacts of human involvement.

<span class="mw-page-title-main">Pelamis Wave Energy Converter</span>

The Pelamis Wave Energy Converter was a technology that used the motion of ocean surface waves to create electricity. The machine was made up of connected sections which flex and bend as waves pass; it is this motion which is used to generate electricity.

Marine currents can carry large amounts of water, largely driven by the tides, which are a consequence of the gravitational effects of the planetary motion of the Earth, the Moon and the Sun. Augmented flow velocities can be found where the underwater topography in straits between islands and the mainland or in shallows around headlands plays a major role in enhancing the flow velocities, resulting in appreciable kinetic energy. The Sun acts as the primary driving force, causing winds and temperature differences. Because there are only small fluctuations in current speed and stream location with minimal changes in direction, ocean currents may be suitable locations for deploying energy extraction devices such as turbines. Other effects such as regional differences in temperature and salinity and the Coriolis effect due to the rotation of the earth are also major influences. The kinetic energy of marine currents can be converted in much the same way that a wind turbine extracts energy from the wind, using various types of open-flow rotors.

<span class="mw-page-title-main">Gorlov helical turbine</span> Water turbine

The Gorlov helical turbine (GHT) is a water turbine evolved from the Darrieus turbine design by altering it to have helical blades/foils. Water turbines take kinetic energy and translates it into electricity. It was patented in a series of patents from September 19, 1995 to July 3, 2001 and won 2001 ASME Thomas A. Edison. GHT was invented by Alexander M. Gorlov, professor of Northeastern University.

<span class="mw-page-title-main">Renewable energy in Scotland</span>

The production of renewable energy in Scotland is a topic that came to the fore in technical, economic, and political terms during the opening years of the 21st century. The natural resource base for renewable energy is high by European, and even global standards, with the most important potential sources being wind, wave, and tide. Renewables generate almost all of Scotland's electricity, mostly from the country's wind power.

The Wave Hub is a floating offshore wind and wave power research project. The project is developed approximately 10 miles (16 km) off Hayle, on the north coast of Cornwall, United Kingdom. The hub was installed on the seabed in September 2010, and is a 'socket' sitting on the seabed for wave energy converters to be plugged into. It will have connections to it from arrays of up to four kinds of wave energy converter. A cable from the hub to main land will take electrical power from the devices to the electric grid. The total capacity of the hub will be 20 MWe. The estimated cost of the project is £28 million.

<span class="mw-page-title-main">European Marine Energy Centre</span>

The European Marine Energy Centre (EMEC) Ltd is a UKAS accredited test and research center focusing on wave and tidal power development based in the Orkney Islands, UK. The centre provides developers with the opportunity to test full-scale grid-connected prototype devices in unrivalled wave and tidal conditions.

Marine Current Turbines Ltd (MCT), is a United Kingdom-based company which is developing tidal stream generators. It is owned by the German automation company, Siemens.

<span class="mw-page-title-main">Renewable energy in Canada</span> Use of renewable resources in Canada

As of 2019, renewable energy technologies provide about 17.3% of Canada's total primary energy supply. For electricity renewables provide 67%, with 15% from nuclear and 18% from hydrocarbons.

<span class="mw-page-title-main">Ocean power in New Zealand</span> Renewable energy sources

New Zealand has large ocean energy resources but does not yet generate any power from them. TVNZ reported in 2007 that over 20 wave and tidal power projects are currently under development. However, not a lot of public information is available about these projects. The Aotearoa Wave and Tidal Energy Association was established in 2006 to "promote the uptake of marine energy in New Zealand". According to their 10 February 2008 newsletter, they have 59 members. However, the association doesn't list its members.

<span class="mw-page-title-main">Evopod</span> Tidal energy device

Evopod is a unique tidal energy device being developed by a UK-based company Oceanflow Energy Ltd for generating electricity from tidal streams and ocean currents. It can operate in exposed deep water sites where severe wind and waves also make up the environment.

<span class="mw-page-title-main">Marine energy</span> Energy stored in the waters of oceans

Marine energy or marine power refers to the energy carried by ocean waves, tides, salinity, and ocean temperature differences. The movement of water in the world's oceans creates a vast store of kinetic energy, or energy in motion. Some of this energy can be harnessed to generate electricity to power homes, transport and industries.

<span class="mw-page-title-main">Tidal farm</span>

A tidal farm is a group of multiple tidal stream generators assembled in the same location used for production of electric power, similar to that of a wind farm. The low-voltage powerlines from the individual units are then connected to a substation, where the voltage is stepped up with the use of a transformer for distribution through a high voltage transmission system.

<span class="mw-page-title-main">Tidal stream generator</span> Type of tidal power generation technology

A tidal stream generator, often referred to as a tidal energy converter (TEC), is a machine that extracts energy from moving masses of water, in particular tides, although the term is often used in reference to machines designed to extract energy from run of river or tidal estuarine sites. Certain types of these machines function very much like underwater wind turbines, and are thus often referred to as tidal turbines. They were first conceived in the 1970s during the oil crisis.

References

  1. http://www.energybulletin.net/node/2273
  2. http://www.rechargenews.com/hardcopy/article193733.ece
  3. "History". Archived from the original on 27 October 2010. Retrieved 26 October 2010. Atlantis Resources Corporation
  4. "TruthForce! | Underwater Energy from Australia's Aquanator". Archived from the original on 7 July 2012. Retrieved 25 May 2019.
  5. "Archived copy" (PDF). Archived from the original (PDF) on 6 July 2011. Retrieved 9 February 2010.{{cite web}}: CS1 maint: archived copy as title (link)
  6. "Inventor taps into a new energy source". 27 September 2004.