Arboreal theory

Last updated

The arboreal theory claims that primates evolved from their ancestors by adapting to arboreal life. [1] [2] It was proposed by Grafton Elliot Smith (1912), a neuroanatomist who was chiefly concerned with the emergence of the primate brain. According to this theory, the need for precise depth perception for leaping and the ability to grasp branches were key adaptations for early primates in forested habitats. While the arboreal theory is central to understanding primate evolution, it faces ongoing debate and alternative hypotheses in primatology, reflecting the complexity of evolutionary dynamics.

Contents

Summary

Primates are thought to have developed several of their traits and habits initially while living in trees. One key component to this argument is that primates relied on sight over smell. They were able to develop a keen sense of depth perception, perhaps because of the constant leaping that was necessary to move about the trees. Primates also developed hands and feet that were capable of grasping. This was also a result of arboreal life, which required a great deal of crawling along branches, and reaching out for fruit and other food. These early primates were likely to have eaten foods found in trees, such as flowers, fruits, berries, gums, leaves, and insects. They are thought to have shifted their diets towards insects in the early Cenozoic era, when insects became more numerous.

Key traits and adaptations

Vision

Primates have forward-facing eyes, a characteristic that supports binocular vision, where both eyes produce slightly different images that the brain merges into one. This visual arrangement enhances depth perception, enabling more accurate assessment of distances. One of the most significant adaptations noted by supporters of the arboreal theory is the shift from olfactory to visual dominance. Living in trees, where depth perception is crucial for navigating between branches, primates developed enhanced visual acuity and binocular vision. This was essential not only for movement but also for detecting predators and foraging. high visual acuity allows primates to detect and interpret fine details in their environment. This capability is essential not only for finding food, such as small fruits, flowers, and insects, but also for detecting subtle movements, which could indicate the presence of predators or other threats. Enhanced visual acuity also aids in the social interactions that are crucial among many primate species, allowing individuals to recognize facial expressions and body language from a distance. [3]

Limb morphology

Arboreal life also led to the evolution of limbs that are highly adaptable for grasping and climbing. The hands and feet of primates evolved to be capable of grasping, which facilitated movement along branches, reaching out for food, and ensuring stability in the canopy. One of the most distinctive features of primate limb evolution is the development of opposable thumbs, and in some species, opposable big toes. This opposability allows primates to grip branches firmly and manipulate objects with a precision that is not possible for many other mammals. This trait is particularly well-developed in apes and some monkeys, which often use their hands for tasks requiring fine motor skills, such as grooming and handling food. [4]

Diet

The dietary habits of early primates were significantly influenced by their tree-dwelling lifestyle. Arboreal primates had access to a variety of tree-borne foods, such as fruits, flowers, leaves, gums, and insects. It is believed that a shift towards an insect-rich diet occurred during the early Cenozoic era, coinciding with a global increase in insect populations. This dietary shift is thought to have had further implications on primate evolutionary pathways, including dental adaptations and the development of more acute vision. [5]

Criticism and alternatives

The arboreal theory, which posits that primates evolved their distinct traits like enhanced vision and grasping abilities primarily due to adapting to life in trees, has faced significant criticism and alternatives. The visual predation hypothesis, proposed by Matt Cartmill, argues that these traits evolved instead as adaptations for hunting insects and small vertebrates in complex environments, emphasizing the role of predatory behavior and environmental influences. Another competing theory, the angiosperm radiation hypothesis, links primate evolution to the proliferation of flowering plants during the Cretaceous period, suggesting that the spread of angiosperms created new ecological niches filled by primates, with adaptations like color vision and dexterous hands evolving to exploit these new food sources. Critics of the arboreal theory point to convergent evolution in other arboreal mammals and fossil evidence indicating early primates may have developed key traits before fully adapting to arboreal life, suggesting a mix of ecological and behavioral pressures influenced primate evolution. These alternative theories highlight the complexity of evolutionary biology, demonstrating that primate traits likely emerged from a dynamic interplay of various ecological and adaptive pressures. [6]


Related Research Articles

<span class="mw-page-title-main">Bipedalism</span> Terrestrial locomotion using two limbs

Bipedalism is a form of terrestrial locomotion where a tetrapod moves by means of its two rear limbs or legs. An animal or machine that usually moves in a bipedal manner is known as a biped, meaning 'two feet'. Types of bipedal movement include walking or running and hopping.

<span class="mw-page-title-main">Primate</span> Order of mammals

Primates are the members of a diverse order of mammals. They are divided into the strepsirrhines, which include the lemurs, galagos, and lorisids, and the haplorhines, which include the tarsiers and the simians. Primates arose 85–55 million years ago first from small terrestrial mammals, which adapted to living in the trees of tropical forests: many primate characteristics represent adaptations to life in this challenging environment, including large brains, visual acuity, color vision, a shoulder girdle allowing a large degree of movement in the shoulder joint, and dexterous hands. Primates range in size from Madame Berthe's mouse lemur, which weighs 30 g (1 oz), to the eastern gorilla, weighing over 200 kg (440 lb). There are 376–524 species of living primates, depending on which classification is used. New primate species continue to be discovered: over 25 species were described in the 2000s, 36 in the 2010s, and six in the 2020s.

<span class="mw-page-title-main">Night monkey</span> Genus of New World monkeys

Night monkeys, also known as owl monkeys or douroucoulis, are nocturnal New World monkeys of the genus Aotus, the only member of the family Aotidae. The genus comprises eleven species which are found across Panama and much of South America in primary and secondary forests, tropical rainforests and cloud forests up to 2,400 metres (7,900 ft). Night monkeys have large eyes which improve their vision at night, while their ears are mostly hidden, giving them their name Aotus, meaning "earless".

<span class="mw-page-title-main">Eye</span> Organ that detects light and converts it into electro-chemical impulses in neurons

An eye is a sensory organ that allows an organism to perceive visual information. It detects light and converts it into electro-chemical impulses in neurons (neurones). It is part of an organism's visual system.

<span class="mw-page-title-main">Binocular vision</span> Type of vision with two eyes facing the same direction

In biology, binocular vision is a type of vision in which an animal has two eyes capable of facing the same direction to perceive a single three-dimensional image of its surroundings. Binocular vision does not typically refer to vision where an animal has eyes on opposite sides of its head and shares no field of view between them, like in some animals.

<span class="mw-page-title-main">Depth perception</span> Visual ability to perceive the world in 3D

Depth perception is the ability to perceive distance to objects in the world using the visual system and visual perception. It is a major factor in perceiving the world in three dimensions. Depth perception happens primarily due to stereopsis and accommodation of the eye.

<span class="mw-page-title-main">Strepsirrhini</span> Suborder of primates

Strepsirrhini or Strepsirhini is a suborder of primates that includes the lemuriform primates, which consist of the lemurs of Madagascar, galagos ("bushbabies") and pottos from Africa, and the lorises from India and southeast Asia. Collectively they are referred to as strepsirrhines. Also belonging to the suborder are the extinct adapiform primates which thrived during the Eocene in Europe, North America, and Asia, but disappeared from most of the Northern Hemisphere as the climate cooled. Adapiforms are sometimes referred to as being "lemur-like", although the diversity of both lemurs and adapiforms does not support this comparison.

<span class="mw-page-title-main">Prosimian</span> Obsolete primate taxon

Prosimians are a group of primates that includes all living and extinct strepsirrhines, as well as the haplorhine tarsiers and their extinct relatives, the omomyiforms, i.e. all primates excluding the simians. They are considered to have characteristics that are more "primitive" than those of simians.

<span class="mw-page-title-main">Lemur</span> Clade of primates endemic to the island of Madagascar

Lemurs are wet-nosed primates of the superfamily Lemuroidea, divided into 8 families and consisting of 15 genera and around 100 existing species. They are endemic to the island of Madagascar. Most existing lemurs are small, have a pointed snout, large eyes, and a long tail. They chiefly live in trees and are active at night.

<span class="mw-page-title-main">Brachiation</span> Form of arboreal locomotion involving swinging by the arm

Brachiation, or arm swinging, is a form of arboreal locomotion in which primates swing from tree limb to tree limb using only their arms. During brachiation, the body is alternately supported under each forelimb. This form of locomotion is the primary means of locomotion for the small gibbons and siamangs of southeast Asia. Gibbons in particular use brachiation for as much as 80% of their locomotor activities. Some New World monkeys, such as spider monkeys and muriquis, were initially classified as semibrachiators and move through the trees with a combination of leaping and brachiation. Some New World species also practice suspensory behaviors by using their prehensile tail, which acts as a fifth grasping hand. Evidence has shown that the extinct ape Proconsul from the Miocene of East Africa developed an early form of suspensory behaviour, and was therefore referred to as a probrachiator.

<span class="mw-page-title-main">Folivore</span> Herbivorous animal that specializes in eating leaves

In zoology, a folivore is a herbivore that specializes in eating leaves. Mature leaves contain a high proportion of hard-to-digest cellulose, less energy than other types of foods, and often toxic compounds. For this reason, folivorous animals tend to have long digestive tracts and slow metabolisms. Many enlist the help of symbiotic bacteria to release the nutrients in their diet. Additionally, as has been observed in folivorous primates, they exhibit a strong preference for immature leaves which tend to be easier to masticate, are higher in energy and protein, and lower in fibre and poisons than more mature fibrous leaves.

Stereopsis is the component of depth perception retrieved by means of binocular disparity through binocular vision. It is not the only contributor to depth perception, but it is a major one. Binocular vision occurs because each eye receives a different image due to their slightly different positions in one's head. These positional differences are referred to as "horizontal disparities" or, more generally, "binocular disparities". Disparities are processed in the visual cortex of the brain to yield depth perception. While binocular disparities are naturally present when viewing a real three-dimensional scene with two eyes, they can also be simulated by artificially presenting two different images separately to each eye using a method called stereoscopy. The perception of depth in such cases is also referred to as "stereoscopic depth".

<span class="mw-page-title-main">Knuckle-walking</span> Form of quadrupedal walking using the knuckles

Knuckle-walking is a form of quadrupedal walking in which the forelimbs hold the fingers in a partially flexed posture that allows body weight to press down on the ground through the knuckles. Gorillas and chimpanzees use this style of locomotion, as do anteaters and platypuses.

Monocular vision is vision using only one eye. It is seen in two distinct categories: either a species moves its eyes independently, or a species typically uses two eyes for vision, but is unable to use one due to circumstances such as injury.

The postorbital bar is a bony arched structure that connects the frontal bone of the skull to the zygomatic arch, which runs laterally around the eye socket. It is a trait that only occurs in mammalian taxa, such as most strepsirrhine primates and the hyrax, while haplorhine primates have evolved fully enclosed sockets. One theory for this evolutionary difference is the relative importance of vision to both orders. As haplorrhines tend to be diurnal, and rely heavily on visual input, many strepsirrhines are nocturnal and have a decreased reliance on visual input.

<span class="mw-page-title-main">Arboreal locomotion</span> Movement of animals through trees

Arboreal locomotion is the locomotion of animals in trees. In habitats in which trees are present, animals have evolved to move in them. Some animals may scale trees only occasionally, but others are exclusively arboreal. The habitats pose numerous mechanical challenges to animals moving through them and lead to a variety of anatomical, behavioral and ecological consequences as well as variations throughout different species. Furthermore, many of these same principles may be applied to climbing without trees, such as on rock piles or mountains.

Eye–hand coordination is the coordinated motor control of eye movement with hand movement and the processing of visual input to guide reaching and grasping along with the use of proprioception of the hands to guide the eyes, a modality of multisensory integration. Eye–hand coordination has been studied in activities as diverse as the movement of solid objects such as wooden blocks, archery, sporting performance, music reading, computer gaming, copy-typing, and even tea-making. It is part of the mechanisms of performing everyday tasks; in its absence, most people would not be able to carry out even the simplest of actions such as picking up a book from a table.

Evolutionary aesthetics refers to evolutionary psychology theories in which the basic aesthetic preferences of Homo sapiens are argued to have evolved in order to enhance survival and reproductive success.

<span class="mw-page-title-main">Chameleon vision</span> Visual sense in the family of reptiles

The chameleon is among the most highly visually-oriented lizards, using this sense in prey capture, mating behavior, and predator avoidance. Unique features of chameleon vision include a negative lens, a positive cornea, and monocular focusing. The development of the chameleon visual system could have evolved to aid in prey capture and/or in predator avoidance.

Odor molecules are detected by the olfactory receptors in the olfactory epithelium of the nasal cavity. Each receptor type is expressed within a subset of neurons, from which they directly connect to the olfactory bulb in the brain. Olfaction is essential for survival in most vertebrates; however, the degree to which an animal depends on smell is highly varied. Great variation exists in the number of OR genes among vertebrate species, as shown through bioinformatic analyses. This diversity exists by virtue of the wide-ranging environments that they inhabit. For instance, dolphins that are secondarily adapted to an aquatic niche possess a considerably smaller subset of genes than most mammals. OR gene repertoires have also evolved in relation to other senses, as higher primates with well-developed vision systems tend to have a smaller number of OR genes. As such, investigating the evolutionary changes of OR genes can provide useful information on how genomes respond to environmental changes. Differences in smell sensitivity are also dependent on the anatomy of the olfactory apparatus, such as the size of the olfactory bulb and epithelium.

References

  1. Kennedy, G.E. Paleoanthroplogy (1980) New York: McGraw-Hill Book Company.(p.28)
  2. Sussman, Robert W. (1991). "Primate origins and the evolution of angiosperms". American Journal of Primatology. 23 (4): 209–223. doi:10.1002/ajp.1350230402. PMID   31952400.
  3. Cartmill, Matt (1974-04-26). "Rethinking Primate Origins: The characteristic primate traits cannot be explained simply as adaptations to arboreal life". Science. 184 (4135): 436–443. doi:10.1126/science.184.4135.436. ISSN   0036-8075. PMID   4819676.
  4. "Copyright", Primate Adaptation and Evolution, Elsevier, p. 4, 2013, doi:10.1016/b978-0-12-378632-6.02001-2, ISBN   978-0-12-378632-6 , retrieved 2024-04-17
  5. Swedell, Larissa (2012). "Primate Sociality and Social Systems". Nature. Retrieved April 17, 2024.
  6. Dewar, Robert E.; Richard, Alison F. (2007-08-21). "Evolution in the hypervariable environment of Madagascar". Proceedings of the National Academy of Sciences. 104 (34): 13723–13727. Bibcode:2007PNAS..10413723D. doi: 10.1073/pnas.0704346104 . ISSN   0027-8424. PMC   1947998 . PMID   17698810.