Arithmetic billiards

Last updated
The arithmetic billiard for the numbers 15 and 40: the greatest common divisor is 5, the least common multiple is 120. Arithmetic-billiard-40-15.jpg
The arithmetic billiard for the numbers 15 and 40: the greatest common divisor is 5, the least common multiple is 120.

In recreational mathematics, arithmetic billiards provide a geometrical method to determine the least common multiple and the greatest common divisor of two natural numbers by making use of reflections inside a rectangle whose sides are the two given numbers. This is an easy example of trajectory analysis of dynamical billiards.

Contents

Arithmetic billiards have been discussed as mathematical puzzles by Hugo Steinhaus [1] and Martin Gardner, [2] and are known to mathematics teachers under the name 'Paper Pool'. [3] They have been used as a source of questions in mathematical circles. [4]

The arithmetic billiard path

The arithmetic billiard for the numbers 10 and 40. Arithmetic-billiard-40-10.jpg
The arithmetic billiard for the numbers 10 and 40.

Consider a rectangle with integer sides, and construct a path inside this rectangle as follows:

If one side length divides the other, the path is a zigzag consisting of one or more segments. Else, the path has self-intersections and consists of segments of various lengths in two orthogonal directions. In general, the path is the intersection of the rectangle with a grid of squares (oriented at 45° w.r.t. the rectangle sides).

Arithmetical features of the path

The arithmetic billiard for the numbers 3 and 8: the greatest common divisor is 1, the least common multiple is 24. Arithmetic-billiard-8-3.jpg
The arithmetic billiard for the numbers 3 and 8: the greatest common divisor is 1, the least common multiple is 24.

Call and the side lengths of the rectangle, and divide this into unit squares. The least common multiple is the number of unit squares crossed by the arithmetic billiard path or, equivalently, the length of the path divided by . In particular, the path goes through each unit square if and only if and are coprime.

Suppose that none of the two side lengths divides the other. Then the first segment of the arithmetic billiard path contains the point of self-intersection which is closest to the starting point. The greatest common divisor is the number of unit squares crossed by the first segment of the path up to that point of self-intersection.

The number of bouncing points for the arithmetic billiard path on the two sides of length equals , and similarly for the two sides of length . In particular, if and are coprime, then the total number of contact points between the path and the perimeter of the rectangle (i.e. the bouncing points plus starting and ending corner) equals .

The ending corner of the path is opposite to the starting corner if and only if and are exactly divisible by the same power of two (for example, if they are both odd), else it is one of the two adjacent corners, according to whether or has more factors in its prime factorisation.

The path is symmetric: if the starting and the ending corner are opposite, then the path is pointsymmetric w.r.t. the center of the rectangle, else it is symmetric with respect to the bisector of the side connecting the starting and the ending corner.

The contact points between the arithmetic billiard path and the rectangle perimeter are evenly distributed: the distance along the perimeter (i.e. possibly going around the corner) between two such neighbouring points equals .

Set coordinates in the rectangle such that the starting point is and the opposite corner is . Then any point on the arithmetic billiard path which has integer coordinates has the property that the sum of the coordinates is even (the parity cannot change by moving along diagonals of unit squares). The points of self-intersection of the path, the bouncing points, and the starting and ending corner are exactly the points in the rectangle whose coordinates are multiples of and such that the sum of the coordinates is an even multiple of .

Ideas of proof

By reflecting the billiard, we can visualize the path as a straight line. In this example the ratio of the two given numbers is 2/3. Arithmetic-billiard-reflection.jpg
By reflecting the billiard, we can visualize the path as a straight line. In this example the ratio of the two given numbers is 2/3.

Reflecting the billiard: Consider a square with side . By displaying multiple copies of the original rectangle (with mirror symmetry) we can visualise the arithmetic billiard path as a diagonal of that square. In other words, we can think of reflecting the rectangle rather than the path segments.

Reducing to the coprime case: It is convenient to rescale the rectangle dividing and by their greatest common divisor, operation which does not alter the geometry of the path (e.g. the number of bouncing points).

Reversing the time: The motion of the path is “time reversible”, meaning that if the path is currently traversing one particular unit square (in a particular direction), then there is absolutely no doubt from which unit square and from which direction it just came. [4]

The proof can be found in a popularization article. [5]

One generalisation

A periodic path in the generalised arithmetic billiard with sides 35 and 14. Arithmetic-billiard-35-14.jpg
A periodic path in the generalised arithmetic billiard with sides 35 and 14.

If we allow the starting point of the path to be any point in the rectangle with integer coordinates, then there are also periodic paths unless the rectangle sides are coprime. The length of any periodic path equals .

Related Research Articles

<span class="mw-page-title-main">Associative property</span> Property of a mathematical operation

In mathematics, the associative property is a property of some binary operations, which means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for expressions in logical proofs.

In number theory, an arithmetic, arithmetical, or number-theoretic function is for most authors any function f(n) whose domain is the positive integers and whose range is a subset of the complex numbers. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of n".

In number theory, two integers a and b are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides a does not divide b, and vice versa. This is equivalent to their greatest common divisor (GCD) being 1. One says also ais prime tob or ais coprime withb.

<span class="mw-page-title-main">Euclidean algorithm</span> Algorithm for computing greatest common divisors

In mathematics, the Euclidean algorithm, or Euclid's algorithm, is an efficient method for computing the greatest common divisor (GCD) of two integers (numbers), the largest number that divides them both without a remainder. It is named after the ancient Greek mathematician Euclid, who first described it in his Elements . It is an example of an algorithm, a step-by-step procedure for performing a calculation according to well-defined rules, and is one of the oldest algorithms in common use. It can be used to reduce fractions to their simplest form, and is a part of many other number-theoretic and cryptographic calculations.

In mathematics, the greatest common divisor (GCD) of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers x, y, the greatest common divisor of x and y is denoted . For example, the GCD of 8 and 12 is 4, that is, .

<span class="mw-page-title-main">Least common multiple</span> Smallest positive number divisible by two integers

In arithmetic and number theory, the least common multiple, lowest common multiple, or smallest common multiple of two integers a and b, usually denoted by lcm(ab), is the smallest positive integer that is divisible by both a and b. Since division of integers by zero is undefined, this definition has meaning only if a and b are both different from zero. However, some authors define lcm(a, 0) as 0 for all a, since 0 is the only common multiple of a and 0.

In number theory, a multiplicative function is an arithmetic function f(n) of a positive integer n with the property that f(1) = 1 and

<span class="mw-page-title-main">Quadrilateral</span> Polygon with four sides and four corners

In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words quadri, a variant of four, and latus, meaning "side". It is also called a tetragon, derived from Greek "tetra" meaning "four" and "gon" meaning "corner" or "angle", in analogy to other polygons. Since "gon" means "angle", it is analogously called a quadrangle, or 4-angle. A quadrilateral with vertices , , and is sometimes denoted as .

In arithmetic and computer programming, the extended Euclidean algorithm is an extension to the Euclidean algorithm, and computes, in addition to the greatest common divisor (gcd) of integers a and b, also the coefficients of Bézout's identity, which are integers x and y such that

In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality

<span class="mw-page-title-main">Semicircle</span> Geometric shape

In mathematics, a semicircle is a one-dimensional locus of points that forms half of a circle. It is a circular arc that measures 180°. It has only one line of symmetry.

In geometry, a Heronian triangle is a triangle whose side lengths a, b, and c and area A are all positive integers. Heronian triangles are named after Heron of Alexandria, based on their relation to Heron's formula which Heron demonstrated with the example triangle of sides 13, 14, 15 and area 84.

In algebra, Gauss's lemma, named after Carl Friedrich Gauss, is a statement about polynomials over the integers, or, more generally, over a unique factorization domain. Gauss's lemma underlies all the theory of factorization and greatest common divisors of such polynomials.

In mathematics, a GCD domain is an integral domain R with the property that any two elements have a greatest common divisor (GCD); i.e., there is a unique minimal principal ideal containing the ideal generated by two given elements. Equivalently, any two elements of R have a least common multiple (LCM).

In mathematics, a natural number a is a unitary divisor of a number b if a is a divisor of b and if a and are coprime, having no common factor other than 1. Thus, 5 is a unitary divisor of 60, because 5 and have only 1 as a common factor, while 6 is a divisor but not a unitary divisor of 60, as 6 and have a common factor other than 1, namely 2. 1 is a unitary divisor of every natural number.

<span class="mw-page-title-main">Supernatural number</span>

In mathematics, the supernatural numbers, sometimes called generalized natural numbers or Steinitz numbers, are a generalization of the natural numbers. They were used by Ernst Steinitz in 1910 as a part of his work on field theory.

The digits of some specific integers permute or shift cyclically when they are multiplied by a number n. Examples are:

<span class="mw-page-title-main">Pythagorean theorem</span> Relation between sides of a right triangle

In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse is equal to the sum of the areas of the squares on the other two sides.

<span class="mw-page-title-main">Integer triangle</span> Triangle with integer side lengths

An integer triangle or integral triangle is a triangle all of whose side lengths are integers. A rational triangle is one whose side lengths are rational numbers; any rational triangle can be rescaled by the lowest common denominator of the sides to obtain a similar integer triangle, so there is a close relationship between integer triangles and rational triangles.

In number theory, a kth root of unity modulo n for positive integers k, n ≥ 2, is a root of unity in the ring of integers modulo n; that is, a solution x to the equation . If k is the smallest such exponent for x, then x is called a primitive kth root of unity modulo n. See modular arithmetic for notation and terminology.

References

  1. Steinhaus, Hugo (1999). Mathematical Snapshots (Dover Recreational Math Series ed.). Courier Corporation. p. 63. ISBN   0486409147.
  2. Gardner, Martin (1984). Sixth Book of Mathematical Diversions from "Scientific American". University of Chicago Press. pp. 211–215. ISBN   0226282503.
  3. "Paper Pool Game". NCTM Illuminations. National Council of Teachers of Mathematics. Retrieved 10 January 2018.
  4. 1 2 Tanton, James (2012). Mathematical Galore! The First Five Years of the St. Mark's Institute of Mathematics. The Mathematical Association of America. pp. 145–156. ISBN   978-0883857762.
  5. Perucca, Antonella (April 24, 2018). "Arithmetic Billiards". Plus Magazine. University of Cambridge. Retrieved December 23, 2018.