Asymmetric flow field flow fractionation

Last updated

Asymmetrical flow field-flow fractionation (AF4) is most versatile and most widely used sub-technique within the family of field flow fractionation (FFF) methods. AF4 can be used in aqueous and organic solvents and is able to characterize nanoparticles, polymers and proteins. The theory for AF4 was conceived in 1986 and was established in 1987 and first published by Wahlund and Giddings. [1] AF4 is distinct from symmetrical Flow FFF because it contains only one permeable wall so the cross-flow is caused only by the carrier liquid. The cross-flow is induced by the carrier liquid constantly exiting by way of the semi-permeable wall on the bottom of the channel.

Contents

Flow channel AFFFF channel.svg
Flow channel

Applications and detection methods

Asymmetrical flow field flow fractionation (AF4) is nowadays a common and state-of-the art method for fractionation and separation of macromolecules and particles in a suspension. AF4 is an alternative to HPLC and SEC in cases where column chromatography is not suitable for the analyte. HPLC or SEC would be used for liquid separations for molecules up to 1000 kDa and nanoparticles up to 10 nm. As the size increases above 10 nm, AF4 becomes superior in terms of resolution and recovery.

AF4's applications are flexible for many analytical conditions where a column-based method would be unable to properly separate the desired particles. For macromolecules and nanoparticles AF4 is an alternative method especially when the stationary phase in columns interacts with the sample. AF4 is specifically powerful for inhomogeneous samples where it can separate soluble macromolecules from particles or aggregates.

AF4 and other FFF methods have been extensively used in environmental research on the impact of nano materials [2] and to characterize condensed tannins oxidation. [3]

For high molar mass and branched polymers, AF4 has been shown to achieve good separation, whereas SEC fails, [4] and AF4 has been applied to polyolefines at temperatures above 150 C. [5]

Detection methods are the same as for FFF in general, UV is most popular as a concentration detector, but most AF4 systems include a multi-angle light scattering detector for direct measurement or size and molar mass.

Operational procedures

The AF4 experiment can be separated into three stages:

1. Sample Injection

Samples are injected into the system using a known amount of sample volume. This volume will depend on the AF4 instrument being utilized in the experiment. Starting fractionation immediately after sample injection is not ideal because the sample is going to spread out randomly from the injection site, so the beginning velocity and place of the particles are not all the same. This leads to line broadening and insufficiency. In order to correct such an error, sample focusing is proposed.

2. Sample focusing

A current going opposite of the carrier solvent is used to focus all the particles in the sample to one specified area before fractionation begins. This corrects for any peak broadening that can occur due to particles being dispersed from the injection port to the channel outlet before fractionation begins. Sample preparation is another option that can be achieved in the focus step. Once all the particles are in the same area of the channel, fractionation can occur.

3. Fractionation

There are two components that make up the FFF system. Firstly, the laminar flow that carries the sample through the separation chamber and secondly the separation field applied perpendicular to the channel, against the sample flow.
As particles flow along the channel the cross flow separation field pushes the molecules towards the bottom of the channel. As they pass by the bottom they undergo a counter acting diffusion back into the channel against the carrier flow. The extent to which the molecules can diffuse back into the channel is dictated by their natural Brownian motion, a characteristic based on size that is unique to each individual species. Smaller particles have a higher Brownian motion than larger ones and are able to diffuse higher into the channel against the carrier flow.
The rate of laminar flow within the channel is not uniform. It travels in a parabolic pattern with the speed of the flow increasing towards the center of the channel and decreasing towards the sides. Therefore, the rate at which particles will be carried through will depend on their position within the channel. Those with a greater diffusion, located in the center of the channel, will be transported with a greater velocity. The larger particles in the shallow, slower moving stream are transported with lower flow velocity and elute later than smaller particles. This results in a gentle separation of particles based on mass with the elution order of smallest to largest.

Related Research Articles

In chemical analysis, chromatography is a laboratory technique for the separation of a mixture into its components. The mixture is dissolved in a fluid solvent called the mobile phase, which carries it through a system on which a material called the stationary phase is fixed. Because the different constituents of the mixture tend to have different affinities for the stationary phase and are retained for different lengths of time depending on their interactions with its surface sites, the constituents travel at different apparent velocities in the mobile fluid, causing them to separate. The separation is based on the differential partitioning between the mobile and the stationary phases. Subtle differences in a compound's partition coefficient result in differential retention on the stationary phase and thus affect the separation.

<span class="mw-page-title-main">Size-exclusion chromatography</span> Chromatographic method in which dissolved molecules are separated by their size & molecular weight

Size-exclusion chromatography (SEC), also known as molecular sieve chromatography, is a chromatographic method in which molecules in solution are separated by their size, and in some cases molecular weight. It is usually applied to large molecules or macromolecular complexes such as proteins and industrial polymers. Typically, when an aqueous solution is used to transport the sample through the column, the technique is known as gel-filtration chromatography, versus the name gel permeation chromatography, which is used when an organic solvent is used as a mobile phase. The chromatography column is packed with fine, porous beads which are commonly composed of dextran, agarose, or polyacrylamide polymers. The pore sizes of these beads are used to estimate the dimensions of macromolecules. SEC is a widely used polymer characterization method because of its ability to provide good molar mass distribution (Mw) results for polymers.

<span class="mw-page-title-main">High-performance liquid chromatography</span> Technique used to separate components of a liquid mixture

High-performance liquid chromatography (HPLC), formerly referred to as high-pressure liquid chromatography, is a technique in analytical chemistry used to separate, identify, and quantify each component in a mixture. It relies on pumps to pass a pressurized liquid solvent containing the sample mixture through a column filled with a solid adsorbent material. Each component in the sample interacts slightly differently with the adsorbent material, causing different flow rates for the different components and leading to the separation of the components as they flow out of the column.

<span class="mw-page-title-main">Dispersity</span> Measure of heterogeneity of particle or molecular sizes

In chemistry, the dispersity is a measure of the heterogeneity of sizes of molecules or particles in a mixture. A collection of objects is called uniform if the objects have the same size, shape, or mass. A sample of objects that have an inconsistent size, shape and mass distribution is called non-uniform. The objects can be in any form of chemical dispersion, such as particles in a colloid, droplets in a cloud, crystals in a rock, or polymer macromolecules in a solution or a solid polymer mass. Polymers can be described by molecular mass distribution; a population of particles can be described by size, surface area, and/or mass distribution; and thin films can be described by film thickness distribution.

Gel permeation chromatography (GPC) is a type of size-exclusion chromatography (SEC), that separates analytes on the basis of size, typically in organic solvents. The technique is often used for the analysis of polymers. As a technique, SEC was first developed in 1955 by Lathe and Ruthven. The term gel permeation chromatography can be traced back to J.C. Moore of the Dow Chemical Company who investigated the technique in 1964. The proprietary column technology was licensed to Waters Corporation, who subsequently commercialized this technology in 1964. GPC systems and consumables are now also available from a number of manufacturers. It is often necessary to separate polymers, both to analyze them as well as to purify the desired product.

Protein purification is a series of processes intended to isolate one or a few proteins from a complex mixture, usually cells, tissues or whole organisms. Protein purification is vital for the specification of the function, structure and interactions of the protein of interest. The purification process may separate the protein and non-protein parts of the mixture, and finally separate the desired protein from all other proteins. Separation of one protein from all others is typically the most laborious aspect of protein purification. Separation steps usually exploit differences in protein size, physico-chemical properties, binding affinity and biological activity. The pure result may be termed protein isolate.

<span class="mw-page-title-main">Gas chromatography</span> Type of chromatography

Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substance, or separating the different components of a mixture. In preparative chromatography, GC can be used to prepare pure compounds from a mixture.

<span class="mw-page-title-main">Column chromatography</span>

Column chromatography in chemistry is a chromatography method used to isolate a single chemical compound from a mixture. Chromatography is able to separate substances based on differential adsorption of compounds to the adsorbent; compounds move through the column at different rates, allowing them to be separated into fractions. The technique is widely applicable, as many different adsorbents can be used with a wide range of solvents. The technique can be used on scales from micrograms up to kilograms. The main advantage of column chromatography is the relatively low cost and disposability of the stationary phase used in the process. The latter prevents cross-contamination and stationary phase degradation due to recycling. Column chromatography can be done using gravity to move the solvent, or using compressed gas to push the solvent through the column.

<span class="mw-page-title-main">Ion chromatography</span>

Ion chromatography separates ions and polar molecules based on their affinity to the ion exchanger. It works on almost any kind of charged molecule—including large proteins, small nucleotides, and amino acids. However, ion chromatography must be done in conditions that are one unit away from the isoelectric point of a protein.

The molar mass distribution describes the relationship between the number of moles of each polymer species (Ni) and the molar mass (Mi) of that species. In linear polymers, the individual polymer chains rarely have exactly the same degree of polymerization and molar mass, and there is always a distribution around an average value. The molar mass distribution of a polymer may be modified by polymer fractionation.

Fast protein liquid chromatography (FPLC), is a form of liquid chromatography that is often used to analyze or purify mixtures of proteins. As in other forms of chromatography, separation is possible because the different components of a mixture have different affinities for two materials, a moving fluid and a porous solid. In FPLC the mobile phase is an aqueous solution, or "buffer". The buffer flow rate is controlled by a positive-displacement pump and is normally kept constant, while the composition of the buffer can be varied by drawing fluids in different proportions from two or more external reservoirs. The stationary phase is a resin composed of beads, usually of cross-linked agarose, packed into a cylindrical glass or plastic column. FPLC resins are available in a wide range of bead sizes and surface ligands depending on the application.

Static light scattering is a technique in physical chemistry that measures the intensity of the scattered light to obtain the average molecular weight Mw of a macromolecule like a polymer or a protein in solution. Measurement of the scattering intensity at many angles allows calculation of the root mean square radius, also called the radius of gyration Rg. By measuring the scattering intensity for many samples of various concentrations, the second virial coefficient, A2, can be calculated.

Absolute molar mass is a process used to determine the characteristics of molecules.

<span class="mw-page-title-main">Field flow fractionation</span> Separation technique to characterize the size of colloidal particles

Field-flow fractionation, abbreviated FFF, is a separation technique which does not have a stationary phase. It is similar to liquid chromatography as it works on dilute solutions or suspensions of the solute. Separation is achieved by applying a field perpendicular to the direction of transport of the sample which is pumped through a long and narrow channel. The field exerts a force on the sample components concentrating them towards one of the channel walls, which is called accumulation wall. The force interacts with a property of the sample on which then the separation occurs, in other words on their differing "mobilities" under the force exerted by the field. As an example, for the hydraulic, or cross-flow FFF method, the property driving separation is the translational diffusion coefficient or the hydrodynamic size. For a thermal field, it is the ratio of the thermal and the translational diffusion coefficient.

Polymer characterization is the analytical branch of polymer science.

A monolithic HPLC column, or monolithic column, is a column used in high-performance liquid chromatography (HPLC). The internal structure of the monolithic column is created in such a way that many channels form inside the column. The material inside the column which separates the channels can be porous and functionalized. In contrast, most HPLC configurations use particulate packed columns; in these configurations, tiny beads of an inert substance, typically a modified silica, are used inside the column. Monolithic columns can be broken down into two categories, silica-based and polymer-based monoliths. Silica-based monoliths are known for their efficiency in separating smaller molecules while, polymer-based are known for separating large protein molecules.

Multiangle light scattering (MALS) describes a technique for measuring the light scattered by a sample into a plurality of angles. It is used for determining both the absolute molar mass and the average size of molecules in solution, by detecting how they scatter light. A collimated beam from a laser source is most often used, in which case the technique can be referred to as multiangle laser light scattering (MALLS). The insertion of the word laser was intended to reassure those used to making light scattering measurements with conventional light sources, such as Hg-arc lamps that low-angle measurements could now be made. Until the advent of lasers and their associated fine beams of narrow width, the width of conventional light beams used to make such measurements prevented data collection at smaller scattering angles. In recent years, since all commercial light scattering instrumentation use laser sources, this need to mention the light source has been dropped and the term MALS is used throughout.

Brookhaven Instruments Corporation is a Nova Instruments company established in the late 1960s. Brookhaven Instruments designed modern techniques in characterizing nanoparticles, proteins, and polymers using light scattering techniques such as dynamic, static, electrophoretic, and phase analysis for particle size, zeta potential, molecular mass, and absolute molar mass analysis.

<span class="mw-page-title-main">Polymer Char</span>

Polymer Char is a company which designs and manufactures instrumentation for polymer analysis.

<span class="mw-page-title-main">Desalting and buffer exchange</span>

Desalting and buffer exchange are methods to separate soluble macromolecules from smaller molecules (desalting) or replace the buffer system used for another one suitable for a downstream application. These methods are based on gel filtration chromatography, also called molecular sieve chromatography, which is a form of size-exclusion chromatography. Desalting and buffer exchange are two of the most common gel filtration chromatography applications, and they can be performed using the same resin.

References

  1. Wahlund, Karl-Gustav (1987). "Properties of an asymmetrical flow field-flow fractionation channel having one permeable wall". Anal Chem. 59 (9): 1332–1339. doi:10.1021/ac00136a016. PMID   3605623.
  2. Beckett, Ronald; Bigelow, James C.; Jue, Zhang; Giddings, J. Calvin (1988). "Analysis of Humic Substances Using Flow Field-Flow Fractionation". Aquatic Humic Substances: Influence on Fate and Treatment of Pollutants. Advances in Chemistry. Vol. 219. pp. 65–80. doi:10.1021/ba-1988-0219.ch005. ISBN   9780841214286.
  3. Vernhet, A.; Dubascoux, S. P.; Cabane, B.; Fulcrand, H. L. N.; Dubreucq, E.; Poncet-Legrand, C. L. (2011). "Characterization of oxidized tannins: Comparison of depolymerization methods, asymmetric flow field-flow fractionation and small-angle X-ray scattering". Analytical and Bioanalytical Chemistry. 401 (5): 1559–1569. doi:10.1007/s00216-011-5076-2. PMID   21573842. S2CID   4645218.
  4. Podzimek, S.; Vlcek, T.; Johann, C. (2001). "Characterization of Branched Polymers by Size Exclusion Chromatography Coupled with Multiangle Light Scattering Detector. I. Size Exclusion Chromatography Elution Behavior of Branched Polymers". J Appl Polym Sci. 81 (7): 1588–1594. doi:10.1002/app.1589.
  5. Otte, T.; Pasch, H.; Macko, T.; Brüll, R.; Stadler, F.J.; Kaschta, J.; Becker, F.; Buback, M. (July 2011). "Characterization of branched ultrahigh molar mass polymers by asymmetrical flow field-flow fractionation and size exclusion chromatography". Journal of Chromatography A. 1218 (27): 4257–4267. doi:10.1016/j.chroma.2010.12.072. PMID   21238968.