Atlantic City algorithm

Last updated

Atlantic City algorithm is a probabilistic polynomial time algorithm that answers correctly at least 75% of the time (or, in some versions, some other value greater than 50%). The term "Atlantic City" was first introduced in 1982 by J. Finn in an unpublished manuscript entitled Comparison of probabilistic tests for primality. [1]

Two other common classes of probabilistic algorithms are Monte Carlo algorithms and Las Vegas algorithms. Monte Carlo algorithms are always fast, but only probably correct. On the other hand, Las Vegas algorithms are always correct, but only probably fast. The Atlantic City algorithms, which are bounded probabilistic polynomial time algorithms are probably correct and probably fast. [2]

See also

Related Research Articles

In computational complexity theory, a branch of computer science, bounded-error probabilistic polynomial time (BPP) is the class of decision problems solvable by a probabilistic Turing machine in polynomial time with an error probability bounded by 1/3 for all instances. BPP is one of the largest practical classes of problems, meaning most problems of interest in BPP have efficient probabilistic algorithms that can be run quickly on real modern machines. BPP also contains P, the class of problems solvable in polynomial time with a deterministic machine, since a deterministic machine is a special case of a probabilistic machine.

NP (complexity) Complexity class used to classify decision problems

In computational complexity theory, NP is a complexity class used to classify decision problems. NP is the set of decision problems for which the problem instances, where the answer is "yes", have proofs verifiable in polynomial time by a deterministic Turing machine, or alternatively the set of problems that can be solved in polynomial time by a nondeterministic Turing machine.

In computational complexity theory, randomized polynomial time (RP) is the complexity class of problems for which a probabilistic Turing machine exists with these properties:

ZPP (complexity)

In complexity theory, ZPP is the complexity class of problems for which a probabilistic Turing machine exists with these properties:

In statistics, Markov chain Monte Carlo (MCMC) methods comprise a class of algorithms for sampling from a probability distribution. By constructing a Markov chain that has the desired distribution as its equilibrium distribution, one can obtain a sample of the desired distribution by recording states from the chain. The more steps that are included, the more closely the distribution of the sample matches the actual desired distribution. Various algorithms exist for constructing chains, including the Metropolis–Hastings algorithm.

The AKS primality test is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P". The algorithm was the first that can provably determine whether any given number is prime or composite in polynomial time, without relying on mathematical conjectures such as the generalized Riemann hypothesis. The proof is also notable for not relying on the field of analysis. In 2006 the authors received both the Gödel Prize and Fulkerson Prize for their work.

A randomized algorithm is an algorithm that employs a degree of randomness as part of its logic or procedure. The algorithm typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of achieving good performance in the "average case" over all possible choices of random determined by the random bits; thus either the running time, or the output are random variables.

In computing, a Las Vegas algorithm is a randomized algorithm that always gives correct results; that is, it always produces the correct result or it informs about the failure. However, the runtime of a Las Vegas algorithm differs depending on the input. The usual definition of a Las Vegas algorithm includes the restriction that the expected runtime be finite, where the expectation is carried out over the space of random information, or entropy, used in the algorithm. An alternative definition requires that a Las Vegas algorithm always terminates, but may output a symbol not part of the solution space to indicate failure in finding a solution. The nature of Las Vegas algorithms makes them suitable in situations where the number of possible solutions is limited, and where verifying the correctness of a candidate solution is relatively easy while finding a solution is complex.

In computing, a Monte Carlo algorithm is a randomized algorithm whose output may be incorrect with a certain probability. Two examples of such algorithms are Karger–Stein algorithm and Monte Carlo algorithm for minimum Feedback arc set.

PP (complexity) Class of problems in computer science

In complexity theory, PP is the class of decision problems solvable by a probabilistic Turing machine in polynomial time, with an error probability of less than 1/2 for all instances. The abbreviation PP refers to probabilistic polynomial time. The complexity class was defined by Gill in 1977.

The Solovay–Strassen primality test, developed by Robert M. Solovay and Volker Strassen in 1977, is a probabilistic test to determine if a number is composite or probably prime. The idea behind the test was discovered by M. M. Artjuhov in 1967 (see Theorem E in the paper). This test has been largely superseded by the Baillie–PSW primality test and the Miller–Rabin primality test, but has great historical importance in showing the practical feasibility of the RSA cryptosystem. The Solovay–Strassen test is essentially an Euler–Jacobi pseudoprime test.

Quantum Monte Carlo encompasses a large family of computational methods whose common aim is the study of complex quantum systems. One of the major goals of these approaches is to provide a reliable solution of the quantum many-body problem. The diverse flavors of quantum Monte Carlo approaches all share the common use of the Monte Carlo method to handle the multi-dimensional integrals that arise in the different formulations of the many-body problem.

Motion planning, also path planning is a computational problem to find a sequence of valid configurations that moves the object from the source to destination. The term is used in computational geometry, computer animation, robotics and computer games.

In mathematics, polynomial identity testing (PIT) is the problem of efficiently determining whether two multivariate polynomials are identical. More formally, a PIT algorithm is given an arithmetic circuit that computes a polynomial p in a field, and decides whether p is the zero polynomial. Determining the computational complexity required for polynomial identity testing is one of the most important open problems in algebraic computing complexity.

NP-completeness Complexity class

In computational complexity theory, a problem is NP-complete when:

  1. it is a problem for which the correctness of each solution can be verified quickly and a brute-force search algorithm can find a solution by trying all possible solutions.
  2. the problem can be used to simulate every other problem for which we can verify quickly that a solution is correct. In this sense, NP-complete problems are the hardest of the problems to which solutions can be verified quickly. If we could find solutions of some NP-complete problem quickly, we could quickly find the solutions of every other problem to which a given solution can be easily verified.

In mathematics, an event that occurs with high probability is one whose probability depends on a certain number n and goes to 1 as n goes to infinity, i.e. the probability of the event occurring can be made as close to 1 as desired by making n big enough.

Primality Testing for Beginners is an undergraduate-level mathematics book on primality tests, methods for testing whether a given number is a prime number, centered on the AKS primality test, the first method to solve this problem in polynomial time. It was written by Lasse Rempe-Gillen and Rebecca Waldecker, and originally published in German as Primzahltests für Einsteiger: Zahlentheorie, Algorithmik, Kryptographie. It was translated into English as Primality Testing for Beginners and published in 2014 by the American Mathematical Society, as volume 70 of their Student Mathematical Library book series. A second German-language edition was publisher by Springer in 2016.

References

  1. Richard A. Mollin (2003). RSA and Public Key Cryptography. CHAPMAN & HALL/CRC. p. 80.
  2. William J. Turner (May 2002). Black Box Linear Algebra with the Linbox Library. North carolina State University. p. 3. Retrieved 10 July 2014.