Aurora Pulsed Radiation Simulator

Last updated

The Aurora Pulsed Radiation Simulator (also known as the Aurora flash x-ray simulator) was a 14 TW flash gamma-ray simulator, designed to simulate the effects of a nuclear weapon's bremsstrahlung, or gamma radiation, pulses on military electronic systems. [1] [2] It was built in 1971 by the U.S. Defense Atomic Support Agency (DASA), which eventually became the Defense Threat Reduction Agency, and the U.S. Department of Energy (DOE). [3]

Contents

More than 161 feet (49 m) long and weighing at 1,450 tons, the Aurora Simulator was the first gamma radiation simulator of its size in the world at the time. It was also one of only four large machines in the United States that were built specifically to test complete nuclear weapons packages, with the other three being the Hermes I to III simulators at Sandia Base, New Mexico. Situated at the Harry Diamond Laboratories (which later became a part of the Army Research Laboratory) in Adelphi, Maryland, it was used to test complete weapons electronics packages from the warheads of intercontinental ballistic missiles (ICBMs) to satellites. After more than 20 years of use during the Cold War, the Aurora Simulator was officially decommissioned and disassembled in 1996. [3]

In 1986, the Aurora facility set the world record for the largest amount of high-power microwave power generated from a virtual cathode oscillator. As a result, HDL was recognized by the American Defense Preparedness Association (ADPA) in 1987. [4]

History

Following the use of the atomic bomb in World War II and subsequent development, it became clear that much of the damage they produce comes from powerful, short (sub-microsecond) pulses of various kinds of radiation. Exactly how this works depends, among other particulars, on where the bomb explodes: if it's inside some material, underground and even in air, a primary effect is a shock wave from the expanding bomb material (which, itself, remains more or less in place). However, x-rays with energies between about 1 and 10 MeV, which are least absorbed by materials, can radiate far outside the immediate region of the explosion even as they are gradually absorbed by the material they pass through. In air, they go just about 1000 times farther than they would in water. Since all the x-rays go at the light speed, their pulse shape reflects the explosion itself: much shorter than a microsecond. Sub-MeV radiation from a nuclear explosion may be more important in (empty) space. Given this realization, during the 1960s [3] the U.S. military began to investigate whether military systems could be tested for their response to nuclear-weapon generated pulsed x-rays with flash x-ray machines. At the time these were fairly small, primarily used to take x-rays of fast-moving events such as explosives and bullets.

After the Soviet Union demonstrated the use of the world's first anti-ballistic missiles (ABM) in 1964, in response DASA launched a series of projects that aimed to hasten the advancement of nuclear effects laboratories in the United States. The U.S. military was concerned that the introduction and subsequent nuclear explosion of Soviet AMBs into the airspace would result in radiation that could interfere with the electronics systems of inbound U.S. ICBMs. In order to thoroughly harden U.S. missiles, in 1969 [3] DASA initiated the construction of the Aurora Simulator as a gamma radiation test facility that could produce full-threat level pulses of 1 to 10 MeV photons ("gamma" radiation refers to x-rays (or photons) emitted by nuclei and typically more energetic than 1 MeV).

When selecting the site for the Aurora facility, DASA wanted the gamma radiation simulator to be situated at an existing military laboratory. After much deliberation between the Air Force Weapons Laboratory (AFWL) in New Mexico and the Army and Navy laboratories in the Washington, D.C. area, DASA chose the latter and granted the Harry Diamond Laboratory (HDL) the responsibility of operating the facility. In order to house the Aurora Simulator, HDL moved from its downtown Washington, D.C. site to an area of land in White Oak, Maryland, which would eventually become the ARL Adelphi site. [3]

The cooperation between DASA and HDL on the Aurora project led to many HDL researchers becoming involved in the simulator's development, including assistant to DASA Deputy Director for Science and Technology Peter Haas and former participant in the Manhattan Project Paul Caldwell, who later was placed in charge of the Aurora Simulator. In turn, Caldwell hired physicist Alexander Stewart from Ion Physics (IP) and HDL's Robert Lamb and Dennis Whittaker, the four of whom (including Caldwell) made up the bulk of the research and development team for the Aurora project. The construction of the Aurora Simulator was completed in January 1971, costing about $16 million, and the first test was conducted on the Spartan ABM flight control set in April 1972. Throughout its entire run at HDL, which ended in 1995, the Aurora Simulator conducted 287 numbered tests, resulting in more than 9,100 test shots. [3]

Operation

The Aurora Pulsed Radiation Simulator consisted of four 14 MV Marx generators, each of which contained four parallel 1.25 MJ units connected together to drive four parallel oil-dielectric Blumlein pulse-forming lines (PFLs). Each PFL was coupled with an E-beam diode. [1] [3]

The Aurora Simulator produced four short pulses of high energy bremsstrahlung radiation that overlapped to deliver a single 120 ns wide pulse of 20 to 50 krads (Si) into a 1m cube. It could also deliver 25 krads (Si) throughout a 1m diameter and 1m long cylindrical volume or 50 krads (Si) throughout a 25 cm sphere. What made the Aurora Simulator unique was its ability to provide such a high dose uniformly throughout the nominally cubic-meter volume, which sometimes needed dose measurements at up to 200 locations within a single electronics system. [2] However, in order to obtain the desired radiation levels, all four 230-kA bremsstrahlung pulses had to overlay within 10 ns. [1] [5] This synchronization was made possible by the symmetrization of the four Blumleins that was achieved only just before the facility was closed. During active testing, the Aurora Simulator could do as many as 13 test shots in a single day. In comparison, nuclear weapons testing at the Nevada Test Site was limited to one test shot per three months. [3]

There were two main limitations to the operation of the Aurora Simulator. Early on, the long discharge time of the Blumeins sometimes allowed unintended arcs through the oil to shorten or even prevent the bremsstrahlung pulses. In the early 1990s this problem was solved by improvements in triggering the Blumlein's V/N oil switch. Second, the 40-Ohm impedance of the Blumleins made it inefficient to drive low impedance loads. [6]

Related Research Articles

<span class="mw-page-title-main">Fallout shelter</span> Enclosed space designated to protect occupants from radioactive debris from a nuclear explosion

A fallout shelter is an enclosed space specially designated to protect occupants from radioactive debris or fallout resulting from a nuclear explosion. Many such shelters were constructed as civil defense measures during the Cold War.

A neutron bomb, officially defined as a type of enhanced radiation weapon (ERW), is a low-yield thermonuclear weapon designed to maximize lethal neutron radiation in the immediate vicinity of the blast while minimizing the physical power of the blast itself. The neutron release generated by a nuclear fusion reaction is intentionally allowed to escape the weapon, rather than being absorbed by its other components. The neutron burst, which is used as the primary destructive action of the warhead, is able to penetrate enemy armor more effectively than a conventional warhead, thus making it more lethal as a tactical weapon.

A nuclear electromagnetic pulse is a burst of electromagnetic radiation created by a nuclear explosion. The resulting rapidly varying electric and magnetic fields may couple with electrical and electronic systems to produce damaging current and voltage surges. The specific characteristics of a particular nuclear EMP event vary according to a number of factors, the most important of which is the altitude of the detonation.

<span class="mw-page-title-main">DESY</span> German national research center

DESY, short for Deutsches Elektronen-Synchrotron, is a national research centre for fundamental science located in Hamburg and Zeuthen near Berlin in Germany. It operates particle accelerators used to investigate the structure, dynamics and function of matter, and conducts a broad spectrum of interdisciplinary scientific research in four main areas: particle and high energy physics; photon science; astroparticle physics; and the development, construction and operation of particle accelerators. Its name refers to its first project, an electron synchrotron. DESY is publicly financed by the Federal Republic of Germany and the Federal States of Hamburg and Brandenburg and is a member of the Helmholtz Association.

<span class="mw-page-title-main">Effects of nuclear explosions</span> Type and severity of damage caused by nuclear weapons

The effects of a nuclear explosion on its immediate vicinity are typically much more destructive and multifaceted than those caused by conventional explosives. In most cases, the energy released from a nuclear weapon detonated within the lower atmosphere can be approximately divided into four basic categories:

<span class="mw-page-title-main">Vela (satellite)</span> Group of satellites to detect nuclear detonations

Vela was the name of a group of satellites developed as the Vela Hotel element of Project Vela by the United States to detect nuclear detonations and monitor Soviet Union compliance with the 1963 Partial Test Ban Treaty.

<span class="mw-page-title-main">Operation Sandstone</span> Series of 1940s US nuclear tests

Operation Sandstone was a series of nuclear weapon tests in 1948. It was the third series of American tests, following Trinity in 1945 and Crossroads in 1946, and preceding Ranger. Like the Crossroads tests, the Sandstone tests were carried out at the Pacific Proving Grounds, although at Enewetak Atoll rather than Bikini Atoll. They differed from Crossroads in that they were conducted by the Atomic Energy Commission, with the armed forces having only a supporting role. The purpose of the Sandstone tests was also different: they were primarily tests of new bomb designs rather than of the effects of nuclear weapons. Three tests were carried out in April and May 1948 by Joint Task Force 7, with a work force of 10,366 personnel, of whom 9,890 were military.

<span class="mw-page-title-main">Duck and cover</span> Suggested method of personal protection against the effects of a nuclear explosion

"Duck and cover" is a method of personal protection against the effects of a nuclear explosion. Ducking and covering is useful in offering a degree of protection to personnel located outside the radius of the nuclear fireball but still within sufficient range of the nuclear explosion that standing upright and uncovered is likely to cause serious injury or death. In the most literal interpretation, the focus of the maneuver is primarily on protective actions one can take during the first few crucial seconds-to-minutes after the event, while the film of the same name and a full encompassing of the advice also cater to providing protection up to weeks after the event.

<span class="mw-page-title-main">Project Vela</span>

Project Vela was a United States Department of Defense project to monitor Soviet Union compliance with the 1963 Partial Test Ban Treaty. The treaty banned the testing of nuclear weapons in the atmosphere, in outer space, and underwater, but permitted underground testing.

<span class="mw-page-title-main">Free-electron laser</span> Laser using electron beam in vacuum as gain medium

A free-electron laser (FEL) is a light source producing extremely brilliant and short pulses of radiation. An FEL functions and behaves in many ways like a laser, but instead of using stimulated emission from atomic or molecular excitations, it employs relativistic electrons as a gain medium. Radiation is generated by a bunch of electrons passing through a magnetic structure. In an FEL, this radiation is further amplified as the radiation re-interacts with the electron bunch such that the electrons start to emit coherently, thus allowing an exponential increase in overall radiation intensity.

Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation, especially for environments in outer space, around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.

A bhangmeter is a non-imaging radiometer installed on reconnaissance and navigation satellites to detect atmospheric nuclear detonations and determine the yield of the nuclear weapon. They are also installed on some armored fighting vehicles, in particular NBC reconnaissance vehicles, in order to help detect, localise and analyse tactical nuclear detonations. They are often used alongside pressure and sound sensors in this role in addition to standard radiation sensors. Some nuclear bunkers and military facilities may also be equipped with such sensors alongside seismic event detectors.

<span class="mw-page-title-main">Operation Fishbowl</span> Series of 1960s US high-altitude nuclear tests

Operation Fishbowl was a series of high-altitude nuclear tests in 1962 that were carried out by the United States as a part of the larger Operation Dominic nuclear test program.

<span class="mw-page-title-main">High-altitude nuclear explosion</span> Nuclear detonations in the upper layers of Earths atmosphere

High-altitude nuclear explosions are the result of nuclear weapons testing within the upper layers of the Earth's atmosphere and in outer space. Several such tests were performed at high altitudes by the United States and the Soviet Union between 1958 and 1962.

The Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) is a facility at Los Alamos National Laboratory which is part of the Department of Energy's stockpile stewardship program. It uses two large X-ray machines to record three-dimensional interior images of materials. In most experiments, materials undergo hydrodynamic shock to simulate the implosion process in nuclear bombs and/or the effects of severe hydrodynamic stress. The tests are described as "full-scale mockups of the events that trigger the nuclear detonation". The powerful pulsed X-ray beams allow for an ultra-fast motion picture to be constructed showing the details of the process being studied in three dimensions. The tests are compared with computer simulations to help improve the accuracy of the computer codes. Such testing falls under the category of sub-critical testing.

<span class="mw-page-title-main">Cargo scanning</span>

Cargo scanning or non-intrusive inspection (NII) refers to non-destructive methods of inspecting and identifying goods in transportation systems. It is often used for scanning of intermodal freight shipping containers. In the US it is spearheaded by the Department of Homeland Security and its Container Security Initiative (CSI) trying to achieve one hundred percent cargo scanning by 2012 as required by the US Congress and recommended by the 9/11 Commission. In the US the main purpose of scanning is to detect special nuclear materials (SNMs), with the added bonus of detecting other types of suspicious cargo. In other countries the emphasis is on manifest verification, tariff collection and the identification of contraband. In February 2009, approximately 80% of US incoming containers were scanned. To bring that number to 100% researchers are evaluating numerous technologies, described in the following sections.

Nuclear MASINT is one of the six major subdisciplines generally accepted to make up Measurement and Signature Intelligence (MASINT), which covers measurement and characterization of information derived from nuclear radiation and other physical phenomena associated with nuclear weapons, reactors, processes, materials, devices, and facilities. Nuclear monitoring can be done remotely or during onsite inspections of nuclear facilities. Data exploitation results in characterization of nuclear weapons, reactors, and materials. A number of systems detect and monitor the world for nuclear explosions, as well as nuclear materials production.

<span class="mw-page-title-main">Operation Julin</span> Series of 1990s US nuclear tests

Operation Julin was a group of 7 nuclear tests conducted by the United States in 1991–1992. These tests followed the Operation Sculpin series, and were the last before negotiations began for the Comprehensive Test Ban Treaty.

<span class="mw-page-title-main">Gamma ray</span> Energetic electromagnetic radiation arising from radioactive decay of atomic nuclei

A gamma ray, also known as gamma radiation (symbol γ or ), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically shorter than those of X-rays. With frequencies above 30 exahertz (3×1019 Hz), it imparts the highest photon energy. Paul Villard, a French chemist and physicist, discovered gamma radiation in 1900 while studying radiation emitted by radium. In 1903, Ernest Rutherford named this radiation gamma rays based on their relatively strong penetration of matter; in 1900 he had already named two less penetrating types of decay radiation (discovered by Henri Becquerel) alpha rays and beta rays in ascending order of penetrating power.

An electromagnetic pulse (EMP), also referred to as a transient electromagnetic disturbance (TED), is a brief burst of electromagnetic energy. The origin of an EMP can be natural or artificial, and can occur as an electromagnetic field, as an electric field, as a magnetic field, or as a conducted electric current. The electromagnetic interference caused by an EMP can disrupt communications and damage electronic equipment. An EMP such as a lightning strike can physically damage objects such as buildings and aircraft. The management of EMP effects is a branch of electromagnetic compatibility (EMC) engineering.

References

  1. 1 2 3 Weidenheimer, D.M.; Pereira, N.R.; Judy, D.C. (June 1991). "Aurora Synchronization Improvement". Berkeley Research Associates via Defense Technical Information Center.
  2. 1 2 Kerris, Klaus (March 1976). "The AURORA Dosimetry System". Harry Diamond Labs. Archived from the original on June 2, 2018 via Defense Technical Information Center.
  3. 1 2 3 4 5 6 7 8 Weitze, Karen (2013). "Aurora Pulsed Radiation Simulator" (PDF). Historic American Engineering Record. Archived from the original (PDF) on 2013-06-19 via Internet Archive WayBack Machine.
  4. History of the U.S. Army Research Laboratory. p. 88. ISBN   9780160942310.
  5. Merkel, George; Scharf, William; Spohn, Daniel (October 1982). "Use of the AURORA Flash X-Ray Machine as a Source-Region EMP Simulator and Antenna Coupling Analysis Facility". Harry Diamond Labs via Defense Technical Information Center.
  6. Stewart, Alexander; Huttlin, George (February 1979). "Design Study for an AURORA Modification Leading to a 100-Terawatt Nuclear Weapon Radiation Simulator". Harry Diamond Labs via Defense Technical Information Center.