AutoTutor

Last updated
AutoTutor
Developer(s) Institute for Intelligent Systems
Type Intelligent tutoring system and Educational software
Website https://start.autotutor.org/

AutoTutor is an intelligent tutoring system developed by researchers at the Institute for Intelligent Systems at the University of Memphis, including Arthur C. Graesser that helps students learn Newtonian physics, computer literacy, and critical thinking topics through tutorial dialogue in natural language. [1] [2] [3] AutoTutor differs from other popular intelligent tutoring systems such as the Cognitive Tutor, in that it focuses on natural language dialog. This means that the tutoring occurs in the form of an ongoing conversation, with human input presented using either voice or free text input. To handle this input, AutoTutor uses computational linguistics algorithms including latent semantic analysis, regular expression matching, and speech act classifiers. These complementary techniques focus on the general meaning of the input, precise phrasing or keywords, and functional purpose of the expression, respectively. In addition to natural language input, AutoTutor can also accept ad hoc events such as mouse clicks, learner emotions inferred from emotion sensors, and estimates of prior knowledge from a student model. Based on these inputs, the computer tutor (or tutors) determine when to reply and what speech acts to reply with. This process is driven by a "script" that includes a set of dialog-specific production rules.

AutoTutor simulates the discourse patterns of human tutors, based on analysis of human-to-human tutoring sessions and theoretically grounded tutoring strategies based on cognitive learning principles. [4] It presents a series of challenging open-ended questions that require verbal explanations and reasoning in an answer. It engages in a collaborative, mixed initiative dialog while constructing the answer, a process that typically takes approximately 100 conversational turns. AutoTutor speaks the content of its turns through an animated conversational agent with a speech engine, some facial expressions, and rudimentary gestures. For some topics, there are graphical displays, animations of causal mechanisms, or interactive simulation environments. AutoTutor tracks the cognitive states of the learner by analyzing the content of the dialogue history. AutoTutor dynamically selects the words and statements in each conversational turn in a fashion that is sensitive to what the learner knows. Recent versions of the AutoTutor system also adapt to the learner's emotional states in addition to their cognitive states. [5]

AutoTutor has shown learning gains, particularly on deep reasoning questions, in over a dozen experiments on college students for topics in introductory computer literacy [6] and conceptual physics. [7] Tests of AutoTutor have produced effect sizes with a mean of 0.8 (range of 0.4 to 1.5), depending on the learning measure, the comparison condition, the subject matter, and version of AutoTutor. For comparison, an effect size of 1.0 would be roughly equivalent to a full letter grade. However, the time and cost of authoring content is significantly greater than non-interactive educational materials such as slide decks or traditional textbooks, which is a common problem for intelligent tutoring systems. [8] Methodologies to accelerate authoring of intelligent tutoring systems remain an active area in the field.

Related Research Articles

Affective computing is the study and development of systems and devices that can recognize, interpret, process, and simulate human affects. It is an interdisciplinary field spanning computer science, psychology, and cognitive science. While some core ideas in the field may be traced as far back as to early philosophical inquiries into emotion, the more modern branch of computer science originated with Rosalind Picard's 1995 paper on affective computing and her book Affective Computing published by MIT Press. One of the motivations for the research is the ability to give machines emotional intelligence, including to simulate empathy. The machine should interpret the emotional state of humans and adapt its behavior to them, giving an appropriate response to those emotions.

Instructional scaffolding is the support given to a student by an instructor throughout the learning process. This support is specifically tailored to each student; this instructional approach allows students to experience student-centered learning, which tends to facilitate more efficient learning than teacher-centered learning. This learning process promotes a deeper level of learning than many other common teaching strategies.

A cognitive tutor is a particular kind of intelligent tutoring system that utilizes a cognitive model to provide feedback to students as they are working through problems. This feedback will immediately inform students of the correctness, or incorrectness, of their actions in the tutor interface; however, cognitive tutors also have the ability to provide context-sensitive hints and instruction to guide students towards reasonable next steps.

<span class="mw-page-title-main">Dialogue system</span>

A dialogue system, or conversational agent (CA), is a computer system intended to converse with a human. Dialogue systems employed one or more of text, speech, graphics, haptics, gestures, and other modes for communication on both the input and output channel.

A dialog manager (DM) is a component of a dialog system (DS), responsible for the state and flow of the conversation. Usually:

An intelligent tutoring system (ITS) is a computer system that aims to provide immediate and customized instruction or feedback to learners, usually without requiring intervention from a human teacher. ITSs have the common goal of enabling learning in a meaningful and effective manner by using a variety of computing technologies. There are many examples of ITSs being used in both formal education and professional settings in which they have demonstrated their capabilities and limitations. There is a close relationship between intelligent tutoring, cognitive learning theories and design; and there is ongoing research to improve the effectiveness of ITS. An ITS typically aims to replicate the demonstrated benefits of one-to-one, personalized tutoring, in contexts where students would otherwise have access to one-to-many instruction from a single teacher, or no teacher at all. ITSs are often designed with the goal of providing access to high quality education to each and every student.

A spoken dialog system (SDS) is a computer system able to converse with a human with voice. It has two essential components that do not exist in a written text dialog system: a speech recognizer and a text-to-speech module. It can be further distinguished from command and control speech systems that can respond to requests but do not attempt to maintain continuity over time.

E-learning theory describes the cognitive science principles of effective multimedia learning using electronic educational technology.

Computational humor is a branch of computational linguistics and artificial intelligence which uses computers in humor research. It is a relatively new area, with the first dedicated conference organized in 1996.

Xiangen Hu is a professor in cognitive psychology at the University of Memphis and is a senior researcher at its Institute for Intelligent Systems (IIS).

Allan M. Collins is an American cognitive scientist, Professor Emeritus of Learning Sciences at Northwestern University's School of Education and Social Policy. His research is recognized as having broad impact on the fields of cognitive psychology, artificial intelligence, and education.

Adaptive learning, also known as adaptive teaching, is an educational method which uses computer algorithms as well as artificial intelligence to orchestrate the interaction with the learner and deliver customized resources and learning activities to address the unique needs of each learner. In professional learning contexts, individuals may "test out" of some training to ensure they engage with novel instruction. Computers adapt the presentation of educational material according to students' learning needs, as indicated by their responses to questions, tasks and experiences. The technology encompasses aspects derived from various fields of study including computer science, AI, psychometrics, education, psychology, and brain science.

A dialogue journal is an ongoing written interaction between two people to exchange experiences, ideas, knowledge or reflections. It is used most often in education as a means of sustained written interaction between students and teachers at all education levels. It can be used to promote second language learning and learning in all areas.

<span class="mw-page-title-main">Pedagogical agent</span>

A pedagogical agent is a concept borrowed from computer science and artificial intelligence and applied to education, usually as part of an intelligent tutoring system (ITS). It is a simulated human-like interface between the learner and the content, in an educational environment. A pedagogical agent is designed to model the type of interactions between a student and another person. Mabanza and de Wet define it as "a character enacted by a computer that interacts with the user in a socially engaging manner". A pedagogical agent can be assigned different roles in the learning environment, such as tutor or co-learner, depending on the desired purpose of the agent. "A tutor agent plays the role of a teacher, while a co-learner agent plays the role of a learning companion".

Vincent Aleven is a professor of human-computer interaction and director of the undergraduate program at Carnegie Mellon University's Human–Computer Interaction Institute.

Cognitive computing refers to technology platforms that, broadly speaking, are based on the scientific disciplines of artificial intelligence and signal processing. These platforms encompass machine learning, reasoning, natural language processing, speech recognition and vision, human–computer interaction, dialog and narrative generation, among other technologies.

Michelene (Micki) T. H. Chi is a cognitive and learning scientist known for her work on the development of expertise, benefits of self-explanations, and active learning in the classroom. Chi is the Regents Professor, Dorothy Bray Endowed Professor of Science and Teaching at Arizona State University, where she directs the Learning and Cognition Lab.

Danielle S. McNamara is an educational researcher known for her theoretical and empirical work with reading comprehension and the development of game-based literacy technologies. She is Professor of Psychology and Senior Research Scientist at Arizona State University. She has previously held positions at University of Memphis, Old Dominion University, and University of Colorado, Boulder.

<span class="mw-page-title-main">Carolyn Rosé</span> Computer scientist

Carolyn Penstein Rosé is an American computer scientist who is a Professor of Language Technologies at Carnegie Mellon University. Her research looks to understand human conversation, and use this understanding to build computer systems that support effective communication in an effort to improve human learning. She has previously served as President of the International Society for the Learning Sciences and a Leshner Fellow of the American Association for the Advancement of Science.

References

  1. Graesser, A.C., Chipman, P., Haynes, B.C., & Olney, A. (2005) AutoTutor: An intelligent tutoring system with mixed-initiative dialogue. IEEE Transactions on Education, 48, 612–618
  2. Graesser, A.C., Person, N., Harter, D., & the Tutoring Research Group (2001) Teaching tactics and dialog in AutoTutor International Journal of Artificial Intelligence in Education, 12, 257–279.
  3. Graesser, A.C., VanLehn, K., Rose, C., Jordan, P., & Harter, D. (2001). Intelligent tutoring systems with conversational dialogue. AI Magazine, 22, 39–51.
  4. Graesser, A.C., Wiemer-Hastings, K., Wiemer-Hastings, P., Kreuz, R., & the Tutoring Research Group (1999). Auto Tutor: A simulation of a human tutor. Journal of Cognitive Systems Research, 1, 35–51.
  5. D'Mello, S. K., Craig, S. D., Gholson, B., Franklin, S., Picard, R.,& Graesser, A. C. (2005). Integrating affect sensors in an intelligent tutoring system. In Affective Interactions: The Computer in the Affective Loop Workshop at 2005 International conference on Intelligent User Interfaces (pp.7-13) New York: AMC Press
  6. Graesser, A.C., Lu, S., Jackson, G.T., Mitchell, H., Ventura, M., Olney, A., & Louwerse, M.M. (2004). AutoTutor: A tutor with dialogue in natural language. Behavior Research Methods, Instruments, and Computers, 36, 180-193.
  7. VanLehn, K., Graesser, A.C., Jackson, G.T., Jordan, P., Olney, A., & Rose, C.P. (2007). When are tutorial dialogues more effective than reading? Cognitive Science, 31, 3-62
  8. Aleven, V., Sewall, J., McLaren, B. M., & Koedinger, K. R. (2006). Rapid authoring of intelligent tutors for real-world and experimental use. In Kinshuk, R. Koper, P. Kommers, P. Kirschner, D. G. Sampson, & W. Didderen (Eds.), Proceedings of the 6th IEEE International Conference on Advanced Learning Technologies (ICALT 2006), (pp. 847-851)