Automatic Ground Collision Avoidance System

Last updated

Footage from the head-up-display of a U.S. Air Force Arizona Air National Guard F-16 records a save by the aircraft's Automatic Ground Collision Avoidance System (Auto-GCAS) during a training mission, the fourth confirmed by the NASA-designed system. From an altitude of just over 17,000 ft, the pilot executes an 8.1g maneuver which causes the pilot to lose consciousness. After the aircraft enters a steepening dive in full afterburner for twenty seconds, Auto-GCAS intervenes with a recovery maneuver at 8,760 ft. 652 kt and nose-down almost 55 deg. below the horizon.

The Automatic Ground Collision Avoidance System (Auto-GCAS) enhances safety by mitigating controlled flight into terrain (CFIT) accidents. [1] The Auto-GCAS team was awarded the 2018 Collier Trophy for the design-integration and flight testing in the F-35, marking the year's greatest achievement in aeronautics. [2] This team includes the Air Force Research Laboratory, Lockheed Martin, the F-35 Joint Program Office, the Defense Safety Oversight Council, and NASA. [2]

The Automatic Ground Collision Avoidance System uses inputs from terrain mapping, aircraft location, and automation to avoid ground collisions. The Auto-GCAS system detects imminent ground contact and warns the pilot. If there is no pilot response, the Auto-GCAS takes control, maneuvering to avoid ground contact. When on a safe trajectory, with pilot awareness, control returns to the pilot. [3] Pilot unresponsiveness can be attributed to many factors including: distraction, task saturation, incapacitation, and unconsciousness. The Auto-GCAS system successfully reduced the leading cause of F-16 pilot fatalities. [3]

NASA started working on Auto-GCAS starting in 1997. [4] The system was then jointly developed at the Lockheed Martin [3] Skunk Works and at NASA. In July 2019, seven years ahead of schedule, Lockheed Martin began integration of Auto-GCAS into the F-35 fleet. [5]

Related Research Articles

Avionics Electronic systems used on aircraft

Avionics are the electronic systems used on aircraft. Avionic systems include communications, navigation, the display and management of multiple systems, and the hundreds of systems that are fitted to aircraft to perform individual functions. These can be as simple as a searchlight for a police helicopter or as complicated as the tactical system for an airborne early warning platform.

<span class="mw-page-title-main">Lockheed Martin F-22 Raptor</span> American air superiority fighter

The Lockheed Martin F-22 Raptor is an American single-seat, twin-engine, all-weather stealth tactical fighter aircraft developed for the United States Air Force (USAF). As the result of the USAF's Advanced Tactical Fighter (ATF) program, the aircraft was designed as an air superiority fighter, but also has ground attack, electronic warfare, and signals intelligence capabilities. The prime contractor, Lockheed Martin, built most of the F-22's airframe and weapons systems and conducted final assembly, while Boeing provided the wings, aft fuselage, avionics integration, and training systems.

Lockheed Martin Corporation is an American aerospace, arms, defense, information security, and technology corporation with worldwide interests. It was formed by the merger of Lockheed Corporation with Martin Marietta in March 1995. It is headquartered in North Bethesda, Maryland, in the Washington, D.C. area. Lockheed Martin employs approximately 115,000 employees worldwide, including about 60,000 engineers and scientists as of January 2022.

Collier Trophy Annual aviation award administered by the US National Aeronautical Association

The Robert J. Collier Trophy is an annual aviation award administered by the U.S. National Aeronautic Association (NAA), presented to those who have made "the greatest achievement in aeronautics or astronautics in America, with respect to improving the performance, efficiency, and safety of air or space vehicles, the value of which has been thoroughly demonstrated by actual use during the preceding year."

Glass cockpit Aircraft instrumentation system consisting primarily of multi-function electronic displays

A glass cockpit is an aircraft cockpit that features electronic (digital) flight instrument displays, typically large LCD screens, rather than the traditional style of analog dials and gauges. While a traditional cockpit relies on numerous mechanical gauges to display information, a glass cockpit uses several multi-function displays driven by flight management systems, that can be adjusted to display flight information as needed. This simplifies aircraft operation and navigation and allows pilots to focus only on the most pertinent information. They are also popular with airline companies as they usually eliminate the need for a flight engineer, saving costs. In recent years the technology has also become widely available in small aircraft.

<span class="mw-page-title-main">Ground proximity warning system</span> Alert system meant to prevent pilots from flying or taxiing into obstacles

A ground proximity warning system (GPWS) is a system designed to alert pilots if their aircraft is in immediate danger of flying into the ground or an obstacle. The United States Federal Aviation Administration (FAA) defines GPWS as a type of terrain awareness warning system (TAWS). More advanced systems, introduced in 1996, are known as enhanced ground proximity warning systems (EGPWS), a modern type of TAWS.

Traffic collision avoidance system Aircraft collision avoidance system

A traffic collision avoidance system, also known as a traffic alert and collision avoidance system, is an aircraft collision avoidance system designed to reduce the incidence of mid-air collision (MAC) between aircraft. It monitors the airspace around an aircraft for other aircraft equipped with a corresponding active transponder, independent of air traffic control, and warns pilots of the presence of other transponder-equipped aircraft which may present a threat of MAC. It is a type of airborne collision avoidance system mandated by the International Civil Aviation Organization to be fitted to all aircraft with a maximum take-off mass (MTOM) of over 5,700 kg (12,600 lb) or authorized to carry more than 19 passengers. CFR 14, Ch I, part 135 requires that TCAS I be installed for aircraft with 10-30 passengers and TCAS II for aircraft with more than 30 passengers. ACAS/TCAS is based on secondary surveillance radar (SSR) transponder signals, but operates independently of ground-based equipment to provide advice to the pilot on potentially conflicting aircraft.

<span class="mw-page-title-main">LANTIRN</span> US Air Force navigation and targeting system

LANTIRN is a combined navigation and targeting pod system for use on the United States Air Force fighter aircraft—the F-15E Strike Eagle and F-16 Fighting Falcon. LANTIRN significantly increases the combat effectiveness of these aircraft, allowing them to fly at low altitudes, at night and under-the-weather to attack ground targets with a variety of precision-guided weapons.

<span class="mw-page-title-main">Airborne collision avoidance system</span> Avionics system to avoid aircraft collision

An airborne collision avoidance system operates independently of ground-based equipment and air traffic control in warning pilots of the presence of other aircraft that may present a threat of collision. If the risk of collision is imminent, the system initiates a maneuver that will reduce the risk of collision. ACAS standards and recommended practices are mainly defined in annex 10, volume IV, of the Convention on International Civil Aviation. Much of the technology being applied to both military and general aviation today has been undergoing development by NASA and other partners since the 1980s.

<span class="mw-page-title-main">Synthetic vision system</span>

A synthetic vision system (SVS) is a computer-mediated reality system for aerial vehicles, that uses 3D to provide pilots with clear and intuitive means of understanding their flying environment.

Personal air vehicle Type of aircraft

A personal air vehicle (PAV) is a proposed type of aircraft providing on-demand aviation services.

Direct voice input (DVI), sometimes called voice input control (VIC), is a style of human–machine interaction "HMI" in which the user makes voice commands to issue instructions to the machine through speech recognition.

<span class="mw-page-title-main">Terrain awareness and warning system</span> Technological equipment to prevent pilots from flying into obstacles

In aviation, a terrain awareness and warning system (TAWS) is generally an on-board system aimed at preventing unintentional impacts with the ground, termed "controlled flight into terrain" accidents, or CFIT. The specific systems currently in use are the ground proximity warning system (GPWS) and the enhanced ground proximity warning system (EGPWS). The U.S. Federal Aviation Administration (FAA) introduced the generic term TAWS to encompass all terrain-avoidance systems that meet the relevant FAA standards, which include GPWS, EGPWS and any future system that might replace them.

L-3 SmartDeck - is a fully integrated cockpit system originally developed by L-3 Avionics Systems. and acquired in 2010 by Esterline CMC Electronics through an exclusive licensing agreement.

<span class="mw-page-title-main">Collision avoidance system</span> Motorcar safety system

A collision avoidance system (CAS), also known as a pre-crash system, forward collision warning system, or collision mitigation system, is an advanced driver-assistance system designed to prevent or reduce the severity of a collision. In its basic form, a forward collision warning system monitors a vehicle's speed, the speed of the vehicle in front of it, and the distance between the vehicles, so that it can provide a warning to the driver if the vehicles get too close, potentially helping to avoid a crash. Various technologies and sensors that are used include radar (all-weather) and sometimes laser (LIDAR) and cameras to detect an imminent crash. GPS sensors can detect fixed dangers such as approaching stop signs through a location database. Pedestrian detection can also be a feature of these types of systems.

<span class="mw-page-title-main">General Dynamics F-16 Fighting Falcon variants</span> Specific model of the F-16 fighter aircraft family

A large number of variants of the General Dynamics F-16 Fighting Falcon have been produced by General Dynamics, Lockheed Martin, and various licensed manufacturers. The details of the F-16 variants, along with major modification programs and derivative designs significantly influenced by the F-16, are described below.

Rolls-Royce LiftSystem

The Rolls-Royce LiftSystem, together with the F135 engine, is an aircraft propulsion system designed for use in the STOVL variant of the F-35 Lightning II. The complete system, known as the Integrated Lift Fan Propulsion System (ILFPS), was awarded the Collier Trophy in 2001.

C. Donald Bateman

Charles Donald Bateman, known as Don Bateman, is an electrical engineer and the inventor of the Ground Proximity Warning System (GPWS), a device that is responsible for a marked decline in controlled flight into terrain accidents, such as the Mount Erebus Disaster with Air New Zealand Flight 901.

"It's accepted within the industry that Don Bateman has probably saved more lives than any single person in the history of aviation."

Jet fighter generations classify the major technology leaps in the historical development of the jet fighter. Different authorities have identified different technology jumps as the key ones, dividing fighter development into different numbers of generations. Five generations are now widely recognised, with development of a sixth under way.

Lockheed Martin X-59 QueSST Experimental supersonic aircraft for NASA

The Lockheed Martin X-59 QueSST is an American experimental supersonic aircraft being developed at Skunk Works for NASA's Low-Boom Flight Demonstrator project. Preliminary design started in February 2016, with the X-59 to be delivered to NASA in 2021 for flight testing in 2022. It is expected to cruise at Mach 1.42 at an altitude of 55,000 ft (16,800 m), creating a low 75 Perceived Level decibel (PLdB) thump to evaluate supersonic transport acceptability.

References

  1. "AFRL - Automatic Collision Avoidance Technology (ACAT)". wpafb.af.mil. WPAFB. Retrieved May 30, 2020.
  2. 1 2 "Automatic Ground Collision Avoidance System Team to Receive the 2018 Robert J. Collier Trophy" (PDF) (Press release). NAA. April 5, 2019.
  3. 1 2 3 "Saving the Good Guys with Auto GCAS Technology". Lockheedmartin.com. Lockheed Martin. Retrieved May 30, 2020.
  4. "NASA-Pioneered Automatic Ground-Collision Avoidance System Operational". NASA.gov. NASA. February 11, 2015. Retrieved May 30, 2020.
  5. "Lockheed Martin integrates ground collision avoidance system in F-35A". airforce-technology.com. airforce-technology.com. July 25, 2019. Retrieved May 30, 2020.