Bandwidth smearing

Last updated

Bandwidth smearing is a chromatic aberration of the reconstructed image of a celestial body observed by an astronomical interferometer that occurs because of the frequency bandwidth. In Fourier terms, the different frequencies of the bandwidth probe different spatial frequencies which results in a reconstruct map containing elongated radial features.

Chromatic aberration

In optics, chromatic aberration is a failure of a lens to focus all colors to the same point. It is caused by dispersion: the refractive index of the lens elements varies with the wavelength of light. The refractive index of most transparent materials decreases with increasing wavelength. Since the focal length of a lens depends on the refractive index, this variation in refractive index affects focusing. Chromatic aberration manifests itself as "fringes" of color along boundaries that separate dark and bright parts of the image.

Astronomical interferometer array of separate telescopes, mirror segments, or radio telescope antennas that work together as a single telescope

An astronomical interferometer is an array of separate telescopes, mirror segments, or radio telescope antennas that work together as a single telescope to provide higher resolution images of astronomical objects such as stars, nebulas and galaxies by means of interferometry. The advantage of this technique is that it can theoretically produce images with the angular resolution of a huge telescope with an aperture equal to the separation between the component telescopes. The main drawback is that it does not collect as much light as the complete instrument's mirror. Thus it is mainly useful for fine resolution of more luminous astronomical objects, such as close binary stars. Another drawback is that the maximum angular size of a detectable emission source is limited by the minimum gap between detectors in the collector array.

Frequency is the number of occurrences of a repeating event per unit of time. It is also referred to as temporal frequency, which emphasizes the contrast to spatial frequency and angular frequency. The period is the duration of time of one cycle in a repeating event, so the period is the reciprocal of the frequency. For example: if a newborn baby's heart beats at a frequency of 120 times a minute, its period—the time interval between beats—is half a second. Frequency is an important parameter used in science and engineering to specify the rate of oscillatory and vibratory phenomena, such as mechanical vibrations, audio signals (sound), radio waves, and light.

It is overcome by going to higher spectral resolutions or, in radioastronomy, by using different centres of phase for image reconstruction.

The spectral resolution of a spectrograph, or, more generally, of a frequency spectrum, is a measure of its ability to resolve features in the electromagnetic spectrum. It is usually denoted by , and is closely related to the resolving power of the spectrograph, defined as

Related Research Articles

Analog television original television technology that uses analog signals to transmit video and audio; in an analog television broadcast, the brightness, colors and sound are represented by rapid variations of either the amplitude, frequency or phase of the signal

Analog television or analogue television is the original television technology that uses analog signals to transmit video and audio. In an analog television broadcast, the brightness, colors and sound are represented by rapid variations of either the amplitude, frequency or phase of the signal.

Chrominance the signal used in video systems

Chrominance is the signal used in video systems to convey the color information of the picture, separately from the accompanying luma signal. Chrominance is usually represented as two color-difference components: U = B′ − Y′ (blue − luma) and V = R′ − Y′ (red − luma). Each of these difference components may have scale factors and offsets applied to it, as specified by the applicable video standard.

In astronomy, luminosity is the total amount of energy emitted per unit of time by a star, galaxy, or other astronomical object. As a term for energy emitted per unit time, luminosity is synonymous with power.

Radio telescope form of directional radio antenna used in radio astronomy

A radio telescope is a specialized antenna and radio receiver used to receive radio waves from astronomical radio sources in the sky in radio astronomy. Radio telescopes are the main observing instrument used in radio astronomy, which studies the radio frequency portion of the electromagnetic spectrum emitted by astronomical objects, just as optical telescopes are the main observing instrument used in traditional optical astronomy which studies the light wave portion of the spectrum coming from astronomical objects. Radio telescopes are typically large parabolic ("dish") antennas similar to those employed in tracking and communicating with satellites and space probes. They may be used singly or linked together electronically in an array. Unlike optical telescopes, radio telescopes can be used in the daytime as well as at night. Since astronomical radio sources such as planets, stars, nebulas and galaxies are very far away, the radio waves coming from them are extremely weak, so radio telescopes require very large antennas to collect enough radio energy to study them, and extremely sensitive receiving equipment. Radio observatories are preferentially located far from major centers of population to avoid electromagnetic interference (EMI) from radio, television, radar, motor vehicles, and other manmade electronic devices.

Radio astronomy subfield of astronomy that studies celestial objects at radio frequencies

Radio astronomy is a subfield of astronomy that studies celestial objects at radio frequencies. The first detection of radio waves from an astronomical object was in 1932, when Karl Jansky at Bell Telephone Laboratories observed radiation coming from the Milky Way. Subsequent observations have identified a number of different sources of radio emission. These include stars and galaxies, as well as entirely new classes of objects, such as radio galaxies, quasars, pulsars, and masers. The discovery of the cosmic microwave background radiation, regarded as evidence for the Big Bang theory, was made through radio astronomy.

Aliasing Effect that causes signals to become indistinguishable when sampled; often producing detectable aberrations

In signal processing and related disciplines, aliasing is an effect that causes different signals to become indistinguishable when sampled. It also refers to the distortion or artifact that results when the signal reconstructed from samples is different from the original continuous signal.

Nyquist frequency Important in signal processing and sampling

The Nyquist frequency, named after electronic engineer Harry Nyquist, is half of the sampling rate of a discrete signal processing system. It is sometimes known as the folding frequency of a sampling system. An example of folding is depicted in Figure 1, where fs is the sampling rate and 0.5 fs is the corresponding Nyquist frequency. The black dot plotted at 0.6 fs represents the amplitude and frequency of a sinusoidal function whose frequency is 60% of the sample-rate (fs). The other three dots indicate the frequencies and amplitudes of three other sinusoids that would produce the same set of samples as the actual sinusoid that was sampled. The symmetry about 0.5 fs is referred to as folding.

Dispersion (optics)

In optics, dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency.

The jansky is a non-SI unit of spectral flux density, or spectral irradiance, used especially in radio astronomy. It is equivalent to 10−26 watts per square metre per hertz.

Band-pass filter filter that passes signals within a certain frequency range, and attenuates signals outside that range

A band-pass filter, also bandpass filter or BPF, is a device that passes frequencies within a certain range and rejects (attenuates) frequencies outside that range.

MERLIN Radio interferometer in the UK

The Multi-Element Radio Linked Interferometer Network (MERLIN) is an interferometer array of radio telescopes spread across England. The array is run from Jodrell Bank Observatory in Cheshire by the University of Manchester on behalf of Science and Technology Facilities Council (STFC) as a National Facility.

Astronomy Picture of the Day

Astronomy Picture of the Day (APOD) is a website provided by NASA and Michigan Technological University (MTU). According to the website, "Each day a different image or photograph of our universe is featured, along with a brief explanation written by a professional astronomer." The photograph does not necessarily correspond to a celestial event on the exact day that it is displayed, and images are sometimes repeated. However, the pictures and descriptions often relate to current events in astronomy and space exploration. The text has several hyperlinks to more pictures and websites for more information. The images are either visible spectrum photographs, images taken at non-visible wavelengths and displayed in false color, video footage, animations, artist’s conceptions, or micrographs that relate to space or cosmology. Past images are stored in the APOD Archive, with the first image appearing on June 16, 1995. This initiative has received support from NASA, the National Science Foundation, and MTU. The images are sometimes authored by people or organizations outside NASA, and therefore APOD images are often copyrighted, unlike many other NASA image galleries.

Aperture synthesis or synthesis imaging is a type of interferometry that mixes signals from a collection of telescopes to produce images having the same angular resolution as an instrument the size of the entire collection. At each separation and orientation, the lobe-pattern of the interferometer produces an output which is one component of the Fourier transform of the spatial distribution of the brightness of the observed object. The image of the source is produced from these measurements. Astronomical interferometers are commonly used for high-resolution optical, infrared, submillimetre and radio astronomy observations.

Combined Array for Research in Millimeter-wave Astronomy

The Combined Array for Research in Millimeter-wave Astronomy (CARMA) was an astronomical instrument comprising 23 radio telescopes. These telescopes formed an astronomical interferometer where all the signals are combined in a purpose-built computer to produce high-resolution astronomical images. The telescopes ceased operation in April 2015 and were relocated to the Owens Valley Radio Observatory for storage.

8 Aquilae is a star in the equatorial constellation of Aquila. 8 Aquilae is the Flamsteed designation. It has an apparent visual magnitude of 6.08 and is about 256 light-years distant from the Earth. This is a delta scuti variable with at least three overlapping pulsation frequencies. It is an F-type giant star with a stellar classification of F2 III.

Haystack Observatory

Haystack Observatory is an astronomical observatory owned by Massachusetts Institute of Technology (MIT). It is located in Westford, Massachusetts (US), approximately 45 kilometers (28 mi) northwest of Boston. Haystack was initially built by MIT's Lincoln Laboratory for the United States Air Force and was known as Haystack Microwave Research Facility. Construction began in 1960, and the antenna began operating in 1964. In 1970 the facility was transferred to MIT, which then formed the Northeast Radio Observatory Corporation (NEROC) with a number of other universities to operate the site as the Haystack Observatory. As of January 2012, a total of nine institutions participated in NEROC.

Smear may refer to:

Murchison Widefield Array radio telescope

The Murchison Widefield Array (MWA) is a joint project between an international consortia of organisations to construct and operate a low-frequency radio array. Operating in the frequency range 70–300 MHz, the main scientific goals of the MWA are to detect neutral atomic Hydrogen emission from the cosmological Epoch of Reionization (EoR), to study the sun, the heliosphere, the Earth's ionosphere, and radio transient phenomena, as well as map the extragalactic radio sky.

Coded aperture

Coded apertures or coded-aperture masks are grids, gratings, or other patterns of materials opaque to various wavelengths of electromagnetic radiation. The wavelengths are usually high-energy radiation such as X-rays and gamma rays. By blocking radiation in a known pattern, a coded "shadow" is cast upon a plane. The properties of the original radiation sources can then be mathematically reconstructed from this shadow. Coded apertures are used in X- and gamma ray imaging systems, because these high-energy rays cannot be focused with lenses or mirrors that work for visible light.

Time smearing or time-average smearing is the degradation of the reconstructed image of a celestial body observed by a ground-based interferometer that occurs because of the duration of the observation. Unlike single telescopes or cameras that can compensate the Earth's rotation in real time with a dedicated mount, the different telescopes of the interferometer are at fixed positions on the Earth. As a result, maps obtained with interferometers feature the elongated orthoradial features similar to those of night sky photographs taken with a fixed tripod, unless they use short enough integration times.

References

International Standard Book Number Unique numeric book identifier

The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended to be unique. Publishers purchase ISBNs from an affiliate of the International ISBN Agency.