Bargaining power

Last updated

Bargaining power is the relative ability of parties in an argumentative situation (such as bargaining, contract writing, or making an agreement) to exert influence over each other. If both parties are on an equal footing in a debate, then they will have equal bargaining power, such as in a perfectly competitive market, or between an evenly matched monopoly and monopsony.

Contents

There are a number of fields where the concept of bargaining power has proven crucial to coherent analysis, including game theory, labour economics, collective bargaining arrangements, diplomatic negotiations, settlement of litigation, the price of insurance, and any negotiation in general.

Calculation

Several formulations of bargaining power have been devised. A popular one from 1951 and due to American economist Neil W. Chamberlain is: [1]

We may define bargaining power (of A, let us say) as being the cost to B of disagreeing on A's terms relative to the costs of agreeing on A's terms ... Stated in another way, a (relatively) high cost to B of disagreement with A means that A's bargaining power is strong. A (relatively) high cost of agreement means that A's bargaining power is weak. Such statements in themselves, however, reveal nothing of the strength or weakness of A relative to B, since B might similarly possess a strong or weak bargaining power. But if the cost to B of disagreeing on A's terms are greater than the cost of agreeing on A's terms, while the cost to A of disagreeing on B's terms is less than the cost of agreeing on B's terms, then A's bargaining power is greater than that of B. More generally, only if the difference to B between the costs of disagreement and agreement on A's terms is proportionately greater than the difference to A between the costs of disagreement and agreement on B's terms can it be said that A's bargaining power is greater than that of B.

In another formulation, bargaining power is expressed as a ratio of a party's ability to influence the other participant, to the costs of not reaching an agreement to that party:[ citation needed ]

If is greater than , then A has greater Bargaining Power than B, and the resulting agreement will tend to favor A. The reverse is expected if B has greater bargaining power instead.

These formulations and more complex models with more precisely defined variables are used to predict the probability of observing a certain outcome from a range of outcomes based on the parties' characteristics and behavior before and after the negotiation.

Buying power

Buying power is a specific type of bargaining power relating to a purchaser and a supplier. For example, a retailer may be able to dictate price to a small supplier if it has a large market share and or can bulk buy. [2]

Economic theory

In modern economic theory, the bargaining outcome between two parties is often modeled by the Nash Bargaining solution. [3] [4] An example is if party A and party B can collaborate in order to generate a surplus of . If the parties fail to reach an agreement, party A gets a payoff and party B gets a payoff . If , reaching an agreement yields a larger total surplus. According to the generalized Nash bargaining solution, party A gets and party B gets , where . [5] There are different ways to derive . For example, Rubinstein (1982) has shown that in a bargaining game with alternating offers, is close to when party A is much more patient than party B, while is equal to if both parties are equally patient. [6] In this case, party A's payoff is increasing in as well as in , and so both parameters reflect different aspects of party A's power. To clearly distinguish between the two parameters, some authors such as Schmitz refer to as party A's bargaining power and to as party A's bargaining position. [7] A prominent application is the property rights approach to the theory of the firm. In this application, is often exogenously fixed to , while and are determined by investments of the two parties. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Fourier series</span> Decomposition of periodic functions into sums of simpler sinusoidal forms

A Fourier series is a sum that represents a periodic function as a sum of sine and cosine waves. The frequency of each wave in the sum, or harmonic, is an integer multiple of the periodic function's fundamental frequency. Each harmonic's phase and amplitude can be determined using harmonic analysis. A Fourier series may potentially contain an infinite number of harmonics. Summing part of but not all the harmonics in a function's Fourier series produces an approximation to that function. For example, using the first few harmonics of the Fourier series for a square wave yields an approximation of a square wave.

<span class="mw-page-title-main">Exponentiation</span> Mathematical operation

Exponentiation is a mathematical operation, written as bn, involving two numbers, the baseb and the exponent or powern, and pronounced as "b (raised) to the n". When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, bn is the product of multiplying n bases:

<span class="mw-page-title-main">Stirling's approximation</span> Approximation for factorials

In mathematics, Stirling's approximation is an approximation for factorials. It is a good approximation, leading to accurate results even for small values of . It is named after James Stirling, though a related but less precise result was first stated by Abraham de Moivre.

<span class="mw-page-title-main">Spherical harmonics</span> Special mathematical functions defined on the surface of a sphere

In mathematics and physical science, spherical harmonics are special functions defined on the surface of a sphere. They are often employed in solving partial differential equations in many scientific fields.

Prime-counting function Function representing the number of primes less than or equal to a given number

In mathematics, the prime-counting function is the function counting the number of prime numbers less than or equal to some real number x. It is denoted by π(x).

<span class="mw-page-title-main">Inverse trigonometric functions</span> Arcsin, arccos, arctan, etc

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

Faà di Bruno's formula is an identity in mathematics generalizing the chain rule to higher derivatives. It is named after Francesco Faà di Bruno, although he was not the first to state or prove the formula. In 1800, more than 50 years before Faà di Bruno, the French mathematician Louis François Antoine Arbogast had stated the formula in a calculus textbook, which is considered to be the first published reference on the subject.

In game theory, a cooperative game is a game with competition between groups of players ("coalitions") due to the possibility of external enforcement of cooperative behavior. Those are opposed to non-cooperative games in which there is either no possibility to forge alliances or all agreements need to be self-enforcing.

Lambda cube

In mathematical logic and type theory, the λ-cube is a framework introduced by Henk Barendregt to investigate the different dimensions in which the calculus of constructions is a generalization of the simply typed λ-calculus. Each dimension of the cube corresponds to a new kind of dependency between terms and types. Here, "dependency" refers to the capacity of a term or type to bind a term or type. The respective dimensions of the λ-cube correspond to:

The Stackelberg leadership model is a strategic game in economics in which the leader firm moves first and then the follower firms move sequentially. It is named after the German economist Heinrich Freiherr von Stackelberg who published Market Structure and Equilibrium in 1934, which described the model. In game theory terms, the players of this game are a leader and a follower and they compete on quantity. The Stackelberg leader is sometimes referred to as the Market Leader.

<span class="mw-page-title-main">Area of a circle</span>

In geometry, the area enclosed by a circle of radius r is πr2. Here the Greek letter π represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159.

Directivity Measure of how much of an antennas signal is transmitted in one direction

In electromagnetics, directivity is a parameter of an antenna or optical system which measures the degree to which the radiation emitted is concentrated in a single direction. It is the ratio of the radiation intensity in a given direction from the antenna to the radiation intensity averaged over all directions. Therefore, the directivity of a hypothetical isotropic radiator is 1, or 0 dBi.

Approximations of <span class="texhtml mvar" style="font-style:italic;">π</span> History of calculating π to degrees of precision

Approximations for the mathematical constant pi in the history of mathematics reached an accuracy within 0.04% of the true value before the beginning of the Common Era. In Chinese mathematics, this was improved to approximations correct to what corresponds to about seven decimal digits by the 5th century.

<span class="mw-page-title-main">Sine and cosine</span> Trigonometric functions of an angle

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .

Expected shortfall (ES) is a risk measure—a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst of cases. ES is an alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution.

Tail value at risk (TVaR), also known as tail conditional expectation (TCE) or conditional tail expectation (CTE), is a risk measure associated with the more general value at risk. It quantifies the expected value of the loss given that an event outside a given probability level has occurred.

<span class="mw-page-title-main">Argument (complex analysis)</span>

In mathematics, the argument of a complex number z, denoted arg(z), is the angle between the positive real axis and the line joining the origin and z, represented as a point in the complex plane, shown as in Figure 1. It is a multi-valued function operating on the nonzero complex numbers. To define a single-valued function, the principal value of the argument is used. It is often chosen to be the unique value of the argument that lies within the interval (−π, π].

Cooperative bargaining is a process in which two people decide how to share a surplus that they can jointly generate. In many cases, the surplus created by the two players can be shared in many ways, forcing the players to negotiate which division of payoffs to choose. Such surplus-sharing problems are faced by management and labor in the division of a firm's profit, by trade partners in the specification of the terms of trade, and more.

In mathematics, Bhaskara I's sine approximation formula is a rational expression in one variable for the computation of the approximate values of the trigonometric sines discovered by Bhaskara I, a seventh-century Indian mathematician. This formula is given in his treatise titled Mahabhaskariya. It is not known how Bhaskara I arrived at his approximation formula. However, several historians of mathematics have put forward different hypotheses as to the method Bhaskara might have used to arrive at his formula. The formula is elegant, simple and enables one to compute reasonably accurate values of trigonometric sines without using any geometry whatsoever.

In oligopoly theory, conjectural variation is the belief that one firm has an idea about the way its competitors may react if it varies its output or price. The firm forms a conjecture about the variation in the other firm's output that will accompany any change in its own output. For example, in the classic Cournot model of oligopoly, it is assumed that each firm treats the output of the other firms as given when it chooses its output. This is sometimes called the "Nash conjecture" as it underlies the standard Nash equilibrium concept. However, alternative assumptions can be made. Suppose you have two firms producing the same good, so that the industry price is determined by the combined output of the two firms. Now suppose that each firm has what is called the "Bertrand Conjecture" of −1. This means that if firm A increases its output, it conjectures that firm B will reduce its output to exactly offset firm A's increase, so that total output and hence price remains unchanged. With the Bertrand Conjecture, the firms act as if they believe that the market price is unaffected by their own output, because each firm believes that the other firm will adjust its output so that total output will be constant. At the other extreme is the Joint-Profit maximizing conjecture of +1. In this case each firm believes that the other will imitate exactly any change in output it makes, which leads to the firms behaving like a single monopoly supplier.

References

  1. Kuhn, James W.; Lewin, David; McNulty, Paul J. (July 1983). "Neil W. Chamberlain: A Retrospective Analysis of His Scholarly Work and Influence". British Journal of Industrial Relations. 21 (2): 143–160. doi:10.1111/j.1467-8543.1983.tb00127.x.
  2. John Allen (2009). "Chapter 2 One-stop shopping". Making Social Lifes. Milton Keynes: The Open University. p. 66.
  3. Muthoo, Abhinay (1999). Bargaining Theory with Applications. Cambridge University Press.
  4. Binmore, Ken; Rubinstein, Ariel; Wolinsky, Asher (1986). "The Nash Bargaining Solution in Economic Modelling". The RAND Journal of Economics. 17 (2): 176. doi:10.2307/2555382. ISSN   0741-6261. JSTOR   2555382.
  5. In this context, designates an arbitrary variable, not the constant π.
  6. Rubinstein, Ariel (1982). "Perfect Equilibrium in a Bargaining Model". Econometrica. 50 (1): 97–109. CiteSeerX   10.1.1.295.1434 . doi:10.2307/1912531. JSTOR   1912531.
  7. Schmitz, Patrick W. (2013). "Bargaining position, bargaining power, and the property rights approach" (PDF). Economics Letters. 119 (1): 28–31. doi:10.1016/j.econlet.2013.01.011. ISSN   0165-1765. S2CID   54953889.
  8. Hart, Oliver (1995). "Firms, Contracts, and Financial Structure". Clarendon Press.{{cite journal}}: Cite journal requires |journal= (help)