Bentley's paradox

Last updated
Richard Bently Richard Bentley 3.jpg
Richard Bently

Bentley's paradox (named after Richard Bentley) is a cosmological paradox pointing to a problem occurring when Newton's theory of gravitation is applied to cosmology. Namely, if all the stars are drawn to each other by gravitation, they should collapse into a single point.

In 1687, Isaac Newton published the Principia which contained his universal law of gravitational attraction. Five years later, Richard Bentley, a young churchman and scholar who was preparing a lecture about Newton's theories and the rejection of atheism, wrote a letter to Newton: in a finite universe, if all stars attract each other, would they not collapse into a point? And in an infinite universe with infinitely many stars, would not every star be pulled apart by infinite forces acting in all directions? In his reply, Newton agreed with the first point and favored an infinite universe with infinitely many stars, so that each star would be drawn in all directions equally, the forces would cancel and no collapse would occur. Newton acknowledged the problem that the stars would have to be precisely placed to maintain such an unstable equilibrium without collapse, and later claimed that God prevented the collapse by making "constant minute corrections"; "a continual miracle is needed to prevent the Sun and the fixt stars from rushing together through gravity." [1] [2]

Both Newton and Bentley thought that the stars did not move and did not consider stars in motion. [2] A finite number of mutually attracting stars in motion can indeed avoid collapse. [3]

Today it is known that an infinite universe uniformly filled with gravitating matter, if it originated in a static configuration, would indeed collapse. This conclusion originally arose from the general theory of relativity, [3] but it is also predicted by Newtonian gravity with the use of mathematical tools that were not available to Newton. [4] [5]

Though Newton's explanation was rather unsatisfactory from a cosmological aspect, Bentley's paradox could prove to be the reason behind the "Big Crunch", the opposite phenomenon of the "Big Bang". [6]

References and notes

  1. Croswell, Ken (2001). The universe at midnight : observations illuminating the cosmos. New York : Free Press. p. 8. ISBN   978-0-684-85931-6.
  2. 1 2 Hoskin, Michael (1985). "Stukeley's Cosmology and the Newtonian Origins of Olbers's Paradox". Journal for the History of Astronomy. 16 (2): 77–112 [86–89]. Bibcode:1985JHA....16...77H. doi:10.1177/002182868501600201. S2CID   117384709.
  3. 1 2 Harrison, Edward (1986). "Newton and the Infinite Universe" (PDF). Physics Today. 39 (2): 24–32. Bibcode:1986PhT....39b..24H. doi:10.1063/1.881049. ISSN   0031-9228. Archived from the original (PDF) on 2022-07-15. Retrieved 2022-05-08.
  4. Tipler, Monthly Notices of the Royal Astronomical Society 282(1), 206-210 (1996).
  5. Gibbons & Ellis, Classical and Quantum Gravity 31 (2), 025003 (2014), arXiv:1308.1852
  6. Clegg, Brian (4 August 2009). "What and How Big?". Before the Big Bang: The Prehistory of Our Universe . St. Martin's Press. pp.  32–35. ISBN   9780312385477

Related Research Articles

<span class="mw-page-title-main">Big Bang</span> Physical theory

The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. The notion of an expanding universe was first scientifically originated by physicist Alexander Friedmann in 1922 with the mathematical derivation of the Friedmann equations. The earliest empirical observation of the notion of an expanding universe is known as Hubble's Law, published in work by physicist Edwin Hubble in 1929, which discerned that galaxies are moving away from Earth at a rate that accelerates proportionally with distance. Independent of Friedmann's work, and independent of Hubble's observations, physicist Georges Lemaître proposed that the universe emerged from a "primeval atom" in 1931, introducing the modern notion of the Big Bang.

<span class="mw-page-title-main">General relativity</span> Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity, and as Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time, or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever present matter and radiation. The relation is specified by the Einstein field equations, a system of second-order partial differential equations.

<span class="mw-page-title-main">Olbers's paradox</span> Argument in astrophysics against the theory of an unchanging universe

Olbers's paradox, also known as the dark night paradox or Olbers and Cheseaux's paradox, is an argument in astrophysics and physical cosmology that says the darkness of the night sky conflicts with the assumption of an infinite and eternal static universe. In the hypothetical case that the universe is static, homogeneous at a large scale, and populated by an infinite number of stars, any line of sight from Earth must end at the surface of a star and hence the night sky should be completely illuminated and very bright. This contradicts the observed darkness and non-uniformity of the night sky.

<span class="mw-page-title-main">Universe</span> Everything in space and time

The universe is all of space and time and their contents. It comprises all of existence, any fundamental interaction, physical process and physical constant, and therefore all forms of matter and energy, and the structures they form, from sub-atomic particles to entire galactic filaments. Since the early 20th century, the field of cosmology establishes that space and time emerged together at the Big Bang 13.787±0.020 billion years ago and that the universe has been expanding since then. The portion of the universe that we can see is approximately 93 billion light-years in diameter at present, but the total size of the universe is not known.

<span class="mw-page-title-main">Gravity</span> Attraction of masses and energy

In physics, gravity (from Latin gravitas 'weight') is a fundamental interaction primarily observed as mutual attraction between all things that have mass. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong interaction, 1036 times weaker than the electromagnetic force and 1029 times weaker than the weak interaction. As a result, it has no significant influence at the level of subatomic particles. However, gravity is the most significant interaction between objects at the macroscopic scale, and it determines the motion of planets, stars, galaxies, and even light.

<span class="mw-page-title-main">Gravitational singularity</span> Condition in which spacetime itself breaks down

A gravitational singularity, spacetime singularity or simply singularity is a theoretical condition in which gravity is predicted to be so intense that spacetime itself would break down catastrophically. As such, a singularity is by definition no longer part of the regular spacetime and cannot be determined by "where" or "when". Gravitational singularities exist at a junction between general relativity and quantum mechanics; therefore, the properties of the singularity cannot be described without an established theory of quantum gravity. Trying to find a complete and precise definition of singularities in the theory of general relativity, the current best theory of gravity, remains a difficult problem. A singularity in general relativity can be defined by the scalar invariant curvature becoming infinite or, better, by a geodesic being incomplete.

<i>A Brief History of Time</i> 1988 book by Stephen Hawking

A Brief History of Time: From the Big Bang to Black Holes is a book on theoretical cosmology by the physicist Stephen Hawking. It was first published in 1988. Hawking wrote the book for readers who had no prior knowledge of physics.

<span class="mw-page-title-main">Ultimate fate of the universe</span> Theories about the end of the universe

The ultimate fate of the universe is a topic in physical cosmology, whose theoretical restrictions allow possible scenarios for the evolution and ultimate fate of the universe to be described and evaluated. Based on available observational evidence, deciding the fate and evolution of the universe has become a valid cosmological question, being beyond the mostly untestable constraints of mythological or theological beliefs. Several possible futures have been predicted by different scientific hypotheses, including that the universe might have existed for a finite and infinite duration, or towards explaining the manner and circumstances of its beginning.

<span class="mw-page-title-main">Big Crunch</span> Hypothetical scenario for the ultimate fate of the universe

The Big Crunch is a hypothetical scenario for the ultimate fate of the universe, in which the expansion of the universe eventually reverses and the universe recollapses, ultimately causing the cosmic scale factor to reach zero, an event potentially followed by a reformation of the universe starting with another Big Bang. The vast majority of evidence indicates that this hypothesis is not correct. Instead, astronomical observations show that the expansion of the universe is accelerating rather than being slowed by gravity, suggesting that a Big Freeze is more likely. Nonetheless, some physicists have proposed that a "Big Crunch-style" event could result from a dark energy fluctuation.

<span class="mw-page-title-main">Non-standard cosmology</span> Models of the universe which deviate from then-current scientific consensus

A non-standard cosmology is any physical cosmological model of the universe that was, or still is, proposed as an alternative to the then-current standard model of cosmology. The term non-standard is applied to any theory that does not conform to the scientific consensus. Because the term depends on the prevailing consensus, the meaning of the term changes over time. For example, hot dark matter would not have been considered non-standard in 1990, but would have been in 2010. Conversely, a non-zero cosmological constant resulting in an accelerating universe would have been considered non-standard in 1990, but is part of the standard cosmology in 2010.

In general relativity, a white hole is a hypothetical region of spacetime and singularity that cannot be entered from the outside, although energy-matter, light and information can escape from it. In this sense, it is the reverse of a black hole, from which energy-matter, light and information cannot escape. White holes appear in the theory of eternal black holes. In addition to a black hole region in the future, such a solution of the Einstein field equations has a white hole region in its past. This region does not exist for black holes that have formed through gravitational collapse, however, nor are there any observed physical processes through which a white hole could be formed.

Newton's law of universal gravitation states that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between their centers. Separated objects attract and are attracted as if all their mass were concentrated at their centers. The publication of the law has become known as the "first great unification", as it marked the unification of the previously described phenomena of gravity on Earth with known astronomical behaviors.

The Penrose–Hawking singularity theorems are a set of results in general relativity that attempt to answer the question of when gravitation produces singularities. The Penrose singularity theorem is a theorem in semi-Riemannian geometry and its general relativistic interpretation predicts a gravitational singularity in black hole formation. The Hawking singularity theorem is based on the Penrose theorem and it is interpreted as a gravitational singularity in the Big Bang situation. Penrose was awarded the Nobel Prize in Physics in 2020 "for the discovery that black hole formation is a robust prediction of the general theory of relativity", which he shared with Reinhard Genzel and Andrea Ghez.

<span class="mw-page-title-main">Heat death of the universe</span> Possible fate of the universe

The heat death of the universe is a hypothesis on the ultimate fate of the universe, which suggests the universe will evolve to a state of no thermodynamic free energy, and will therefore be unable to sustain processes that increase entropy. Heat death does not imply any particular absolute temperature; it only requires that temperature differences or other processes may no longer be exploited to perform work. In the language of physics, this is when the universe reaches thermodynamic equilibrium.

<span class="mw-page-title-main">Introduction to general relativity</span> Theory of gravity by Albert Einstein

General relativity is a theory of gravitation developed by Albert Einstein between 1907 and 1915. The theory of general relativity says that the observed gravitational effect between masses results from their warping of spacetime.

<span class="mw-page-title-main">Structure formation</span> Formation of galaxies, galaxy clusters and larger structures from small early density fluctuations

In physical cosmology, structure formation describes the creation of galaxies, galaxy clusters, and larger structures starting from small fluctuations in mass density resulting from processes that created matter. The universe, as is now known from observations of the cosmic microwave background radiation, began in a hot, dense, nearly uniform state approximately 13.8 billion years ago. However, looking at the night sky today, structures on all scales can be seen, from stars and planets to galaxies. On even larger scales, galaxy clusters and sheet-like structures of galaxies are separated by enormous voids containing few galaxies. Structure formation models gravitational instability of small ripples in mass density to predict these shapes, confirming the consistency of the physical model.

<span class="mw-page-title-main">History of the Big Bang theory</span> History of a cosmological theory

The history of the Big Bang theory began with the Big Bang's development from observations and theoretical considerations. Much of the theoretical work in cosmology now involves extensions and refinements to the basic Big Bang model. The theory itself was originally formalised by Father Georges Lemaître in 1927. Hubble's law of the expansion of the universe provided foundational support for the theory.

<span class="mw-page-title-main">Expansion of the universe</span> Increase in distance between parts of the universe over time

The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion, so it does not mean that the universe expands "into" anything or that space exists "outside" it. To any observer in the universe, it appears that all but the nearest galaxies move away at speeds that are proportional to their distance from the observer, on average. While objects cannot move faster than light, this limitation applies only with respect to local reference frames and does not limit the recession rates of cosmologically distant objects.

In astrophysics, an event horizon is a boundary beyond which events cannot affect an observer. Wolfgang Rindler coined the term in the 1950s.

<span class="mw-page-title-main">Black hole cosmology</span> Cosmological model in which the observable universe is the interior of a black hole

A black hole cosmology is a cosmological model in which the observable universe is the interior of a black hole. Such models were originally proposed by theoretical physicist Raj Kumar Pathria, and concurrently by mathematician I. J. Good.