In fluid dynamics, Berman flow is a steady flow created inside a rectangular channel with two equally porous walls. The concept is named after a scientist Abraham S. Berman who formulated the problem in 1953. [1]
Consider a rectangular channel of width much longer than the height. Let the distance between the top and bottom wall be and choose the coordinates such that lies in the midway between the two walls, with points perpendicular to the planes. Let both walls be porous with equal velocity . Then the continuity equation and Navier–Stokes equations for incompressible fluid become [2]
with boundary conditions
The boundary conditions at the center is due to symmetry. Since the solution is symmetric above the plane , it is enough to describe only half of the flow, say for . If we look for a solution, that is independent of , the continuity equation dictates that the horizontal velocity can at most be a linear function of . [3] Therefore, Berman introduced the following form,
where is the average value (averaged cross-sectionally) of at , that is to say
This constant will be eliminated out of the problem and will have no influence on the solution. Substituting this into the momentum equation leads to
Differentiating the second equation with respect to gives this can substituted into the first equation after taking the derivative with respect to which leads to
where is the Reynolds number. Integrating once, we get
with boundary conditions
This third order nonlinear ordinary differential equation requires three boundary condition and the fourth boundary condition is to determine the constant . and this equation is found to possess multiple solutions. [4] [5] The figure shows the numerical solution for low Reynolds number, solving the equation for large Reynolds number is not a trivial computation.
In the limit , the solution can be written as
In the limit , the leading-order solution is given by [6]
The above solution satisfies all the necessary boundary conditions even though Reynolds number is infinite (see also Taylor–Culick flow)
The corresponding problem in porous pipe flows was addressed by S. W. Yuan and A. Finkelstein in 1955. [7]
The Klein–Gordon equation is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a quantized version of the relativistic energy–momentum relation. Its solutions include a quantum scalar or pseudoscalar field, a field whose quanta are spinless particles. Its theoretical relevance is similar to that of the Dirac equation. Electromagnetic interactions can be incorporated, forming the topic of scalar electrodynamics, but because common spinless particles like the pions are unstable and also experience the strong interaction the practical utility is limited.
In physics and fluid mechanics, a boundary layer is the layer of fluid in the immediate vicinity of a bounding surface where the effects of viscosity are significant. The liquid or gas in the boundary layer tends to cling to the surface.
Burgers' equation or Bateman–Burgers equation is a fundamental partial differential equation occurring in various areas of applied mathematics, such as fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flow. The equation was first introduced by Harry Bateman in 1915 and later studied by Johannes Martinus Burgers in 1948.
In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.
In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely.
In physics and fluid mechanics, a Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate which is held parallel to a constant unidirectional flow. Falkner and Skan later generalized Blasius' solution to wedge flow, i.e. flows in which the plate is not parallel to the flow.
In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions.
The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.
The shallow-water equations are a set of hyperbolic partial differential equations that describe the flow below a pressure surface in a fluid. The shallow-water equations in unidirectional form are also called Saint-Venant equations, after Adhémar Jean Claude Barré de Saint-Venant.
In nonideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section. It can be successfully applied to air flow in lung alveoli, or the flow through a drinking straw or through a hypodermic needle. It was experimentally derived independently by Jean Léonard Marie Poiseuille in 1838 and Gotthilf Heinrich Ludwig Hagen, and published by Poiseuille in 1840–41 and 1846. The theoretical justification of the Poiseuille law was given by George Stokes in 1845.
In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.
In fluid dynamics, the Falkner–Skan boundary layer describes the steady two-dimensional laminar boundary layer that forms on a wedge, i.e. flows in which the plate is not parallel to the flow. It is a generalization of the Blasius boundary layer.
In fluid dynamics, the Burgers vortex or Burgers–Rott vortex is an exact solution to the Navier–Stokes equations governing viscous flow, named after Jan Burgers and Nicholas Rott. The Burgers vortex describes a stationary, self-similar flow. An inward, radial flow, tends to concentrate vorticity in a narrow column around the symmetry axis. At the same time, viscous diffusion tends to spread the vorticity. The stationary Burgers vortex arises when the two effects balance.
Von Kármán swirling flow is a flow created by a uniformly rotating infinitely long plane disk, named after Theodore von Kármán who solved the problem in 1921. The rotating disk acts as a fluid pump and is used as a model for centrifugal fans or compressors. This flow is classified under the category of steady flows in which vorticity generated at a solid surface is prevented from diffusing far away by an opposing convection, the other examples being the Blasius boundary layer with suction, stagnation point flow etc.
In fluid dynamics, stagnation point flow represents the flow of a fluid in the immediate neighborhood of a solid surface. As the fluid approaches the surface it divides into two streams. Although the fluid is stagnant everywhere on the solid surface due to no-slip condition, the name stagnation point refers to the stagnation points of inviscid Euler solutions.
In fluid dynamics, Bickley jet is a steady two-dimensional laminar plane jet with large jet Reynolds number emerging into the fluid at rest, named after W. G. Bickley, who gave the analytical solution in 1937, to the problem derived by Schlichting in 1933 and the corresponding problem in axisymmetric coordinates is called as Schlichting jet. The solution is valid only for distances far away from the jet origin.
In fluid dynamics, Rayleigh problem also known as Stokes first problem is a problem of determining the flow created by a sudden movement of an infinitely long plate from rest, named after Lord Rayleigh and Sir George Stokes. This is considered as one of the simplest unsteady problem that have exact solution for the Navier-Stokes equations. The impulse movement of semi-infinite plate was studied by Keith Stewartson.
In fluid dynamics, Stokes problem also known as Stokes second problem or sometimes referred to as Stokes boundary layer or Oscillating boundary layer is a problem of determining the flow created by an oscillating solid surface, named after Sir George Stokes. This is considered one of the simplest unsteady problem that have exact solution for the Navier-Stokes equations. In turbulent flow, this is still named a Stokes boundary layer, but now one has to rely on experiments, numerical simulations or approximate methods in order to obtain useful information on the flow.
Schlichting jet is a steady, laminar, round jet, emerging into a stationary fluid of the same kind with very high Reynolds number. The problem was formulated and solved by Hermann Schlichting in 1933, who also formulated the corresponding planar Bickley jet problem in the same paper. The Landau-Squire jet from a point source is an exact solution of Navier-Stokes equations, which is valid for all Reynolds number, reduces to Schlichting jet solution at high Reynolds number, for distances far away from the jet origin.
In the study of partial differential equations, particularly in fluid dynamics, a self-similar solution is a form of solution which is similar to itself if the independent and dependent variables are appropriately scaled. Self-similar solutions appear whenever the problem lacks a characteristic length or time scale. These include, for example, the Blasius boundary layer or the Sedov–Taylor shell.