Bickley jet

Last updated

In fluid dynamics, Bickley jet is a steady two-dimensional laminar plane jet with large jet Reynolds number emerging into the fluid at rest, named after W. G. Bickley, who gave the analytical solution in 1937, [1] to the problem derived by Schlichting in 1933 [2] and the corresponding problem in axisymmetric coordinates is called as Schlichting jet. The solution is valid only for distances far away from the jet origin.

Contents

Flow description

Consider a steady plane emerging into the same fluid, a type of submerged jets from a narrow slit, which is supposed to be very small (such that the fluid loses memory of the shape and size of the slit far away from the origin, it remembers only the net momentum flux). Let the velocity be in Cartesian coordinate and the axis of the jet be axis with origin at the orifice. The flow is self-similar for large Reynolds number (the jet is so thin that varies much more rapidly in the transverse direction than the streamwise direction) and can be approximated with boundary layer equations.

where is the kinematic viscosity and the pressure is everywhere equal to the outside fluid pressure. Since the fluid is at rest far away from the center of the jet

as ,

and because the flow is symmetric about axis

at ,

and also since there is no solid boundary and the pressure is constant, the momentum flux across any plane normal to the axis must be the same

is a constant, where which also constant for incompressible flow.

Proof of constant axial momentum flux

The constant momentum flux condition can be obtained by integrating the momentum equation across the jet.

where is used to simplify the above equation. The mass flux across any cross section normal to the axis is not constant, because there is a slow entrainment of outer fluid into the jet, and it's a part of the boundary layer solution. This can be easily verified by integrating the continuity equation across the boundary layer.

where symmetry condition is used.

[3] [4]

Self-similar solution

The self-similar solution is obtained by introducing the transformation

the equation reduces to

while the boundary conditions become

The exact solution is given by

where is solved from the following equation

Letting

the velocity is given by

The mass flow rate across a plane at a distance from the orifice normal to the jet is

[5] [6] [7]

See also

Related Research Articles

Navier–Stokes equations Equations describing the motion of viscous fluid substances

In physics, the Navier–Stokes equations are a set of partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician George Gabriel Stokes.

The Grashof number (Gr) is a dimensionless number in fluid dynamics and heat transfer which approximates the ratio of the buoyancy to viscous force acting on a fluid. It frequently arises in the study of situations involving natural convection and is analogous to the Reynolds number. It's believed to be named after Franz Grashof. Though this grouping of terms had already been in use, it wasn't named until around 1921, 28 years after Franz Grashof's death. It's not very clear why the grouping was named after him.

In fluid mechanics, the Rayleigh number (Ra) for a fluid is a dimensionless number associated with buoyancy-driven flow, also known as free or natural convection. It characterises the fluid's flow regime: a value in a certain lower range denotes laminar flow; a value in a higher range, turbulent flow. Below a certain critical value, there is no fluid motion and heat transfer is by conduction rather than convection.

Boundary layer

In physics and fluid mechanics, a boundary layer is the layer of fluid in the immediate vicinity of a bounding surface where the effects of viscosity are significant. The liquid or gas in the boundary layer tends to cling to the surface.

In general relativity, the metric tensor is the fundamental object of study. It may loosely be thought of as a generalization of the gravitational potential of Newtonian gravitation. The metric captures all the geometric and causal structure of spacetime, being used to define notions such as time, distance, volume, curvature, angle, and separation of the future and the past.

Lamb–Oseen vortex

In fluid dynamics, the Lamb–Oseen vortex models a line vortex that decays due to viscosity. This vortex is named after Horace Lamb and Carl Wilhelm Oseen.

In physics and fluid mechanics, a Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate which is held parallel to a constant unidirectional flow. Falkner and Skan later generalized Blasius' solution to wedge flow, i.e. flows in which the plate is not parallel to the flow.

Electromagnetic stress–energy tensor

In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions.

Covariant formulation of classical electromagnetism

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

Shallow water equations set of partial differential equations that describe the flow below a pressure surface in a fluid

The shallow water equations are a set of hyperbolic partial differential equations that describe the flow below a pressure surface in a fluid. The shallow water equations in unidirectional form are also called Saint-Venant equations, after Adhémar Jean Claude Barré de Saint-Venant.

In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.

Radiation stress The depth-integrated excess momentum flux caused by the presence of the surface gravity waves, which is exerted on the mean flow

In fluid dynamics, the radiation stress is the depth-integrated – and thereafter phase-averaged – excess momentum flux caused by the presence of the surface gravity waves, which is exerted on the mean flow. The radiation stresses behave as a second-order tensor.

Falkner–Skan boundary layer

In fluid dynamics, the Falkner–Skan boundary layer describes the steady two-dimensional laminar boundary layer that forms on a wedge, i.e. flows in which the plate is not parallel to the flow. It is a generalization of the Blasius boundary layer.

Von Kármán swirling flow is a flow created by a uniformly rotating infinitely long plane disk, named after Theodore von Kármán who solved the problem in 1921. The rotating disk acts as a fluid pump and is used as a model for centrifugal fans or compressors. This flow is classified under the category of steady flows in which vorticity generated at a solid surface is prevented from diffusing far away by an opposing convection, the other examples being the Blasius boundary layer with suction, stagnation point flow etc.

In fluid dynamics, stagnation point flow represents the flow of a fluid in the immediate neighborhood of a solid surface. As the fluid approaches the surface it divides into different streams. Although the fluid is stagnant everywhere on the solid surface due to no-slip condition, the name stagnation point refers to the stagnation points of inviscid Euler solutions.

In fluid dynamics, Rayleigh problem also known as Stokes first problem is a problem of determining the flow created by a sudden movement of an infinitely long plate from rest, named after Lord Rayleigh and Sir George Stokes. This is considered as one of the simplest unsteady problem that have exact solution for the Navier-Stokes equations. The impulse movement of semi-infinite plate was studied by Keith Stewartson.

In fluid dynamics, Berman flow is a steady flow created inside a rectangular channel with two equally porous walls. The concept is named after a scientist Abraham S. Berman who formulated the problem in 1953.

In fluid dynamics, Landau–Squire jet or Submerged Landau jet describes a round submerged jet issued from a point source of momentum into an infinite fluid medium of the same kind. This is an exact solution to the incompressible form of the Navier-Stokes equations, which was first discovered by Lev Landau in 1944 and later by Herbert Squire in 1951. The self-similar equation was in fact first derived by N. A. Slezkin in 1934, but never applied to the jet. Following Landau's work, V. I. Yatseyev obtained the general solution of the equation in 1950.

The shear viscosity of a fluid is a material property that describes the friction between internal neighboring fluid surfaces flowing with different fluid velocities. This friction is the effect of (linear) momentum exchange caused by molecules with sufficient energy to move between these fluid sheets due to fluctuations in their motion. The viscosity is not a material constant, but a material property that depends on temperature, pressure, fluid mixture composition, local velocity variations. This functional relationship is described by a mathematical viscosity model called a constitutive equation which is usually far more complex than the defining equation of shear viscosity. One such complicating feature is the relation between the viscosity model for a pure fluid and the model for a fluid mixture which is called mixing rules. When scientists and engineers use new arguments or theories to develop a new viscosity model, instead of improving the reigning model, it may lead to the first model in a new class of models. This article will display one or two representative models for different classes of viscosity models, and these classes are:

Schlichting jet is a steady, laminar, round jet, emerging into a stationary fluid of the same kind with very high Reynolds number. The problem was formulated and solved by Hermann Schlichting in 1933, who also formulated the corresponding planar Bickley jet problem in the same paper. The Landau-Squire jet from a point source is an exact solution of Navier-Stokes equations, which is valid for all Reynolds number, reduces to Schlichting jet solution at high Reynolds number, for distances far away from the jet origin.

References

  1. Bickley, W. G. "LXXIII. The plane jet." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 23.156 (1937): 727-731.(Original paper:http://www.tandfonline.com/doi/abs/10.1080/14786443708561847?journalCode=tphm18)
  2. Schlichting, Hermann. "Laminare strahlausbreitung." ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 13.4 (1933): 260-263.
  3. Kundu, P. K., and L. M. Cohen. "Fluid mechanics, 638 pp." Academic, Calif (1990).
  4. Pozrikidis, Costas, and Joel H. Ferziger. "Introduction to theoretical and computational fluid dynamics." (1997): 72–74.
  5. Rosenhead, Louis, ed. Laminar boundary layers. Clarendon Press, 1963.
  6. Acheson, David J. Elementary fluid dynamics. Oxford University Press, 1990.
  7. Drazin, Philip G., and Norman Riley. The Navier–Stokes equations: a classification of flows and exact solutions. No. 334. Cambridge University Press, 2006.