Bioburden is normally defined as the number of bacteria living on a surface that has not been sterilized. [1]
The term is most often used in the context of bioburden testing, also known as microbial limit testing, which is performed on pharmaceutical products and medical products for quality control purposes. Products or components used in the pharmaceutical or medical field require control of microbial levels during processing and handling. Bioburden or microbial limit testing on these products proves that these requirements have been met. Bioburden testing for medical devices made or used in the USA is governed by Title 21 of the Code of Federal Regulations and worldwide by ISO 11737.
The aim of bioburden testing is to measure the total number of viable micro-organisms (total microbial count) on a medical device prior to its final sterilization before implantation or use. [2]
21 C.F.R. 211.110 (a)(6) states that bioburden in-process testing must be conducted pursuant to written procedures during the manufacturing process of drug products. [3] The United States Pharmacopeia (USP) outlines several tests that can be done to quantitatively determine the bioburden of non-sterile drug products. [4]
It is important when conducting these tests to ensure that the testing method does not either introduce bacteria into the test sample or kill bacteria in the test sample. [4] To prepare drug products for testing, they must be dissolved in certain substances based on their "physical characteristics." [4] For example, a water-soluble drug product should be dissolved in "Buffered Sodium Chloride-Peptone Solution pH 7.0, Phosphate Buffer Solution pH 7.2, or Soybean-Casein Digest Broth." [4]
The Membrane-Filtration Method and Plate Count Method can be used to measure the number of microbes in a sample. [4] In the Membrane-Filtration Method, the sample is passed through a membrane filter with a pore size of 0.45 micrometers or less. [4] The membrane filter is then placed onto Soybean-Casein Digest Agar and incubated in order to be able to determine the total aerobic microbial count (TAMC). [4]
In the Plate Count Method, the sample of drug product to be tested and Soybean-Casein Digest Broth is poured into a Petri dish. [4] The Petri dish is then incubated. The most probable number method (MPN) can also be performed for products considered to have a low bioburden[ clarification needed ]. The MPN is considered to be one of the least accurate tests. [4]
The bioburden quantification is expressed in colony forming unit (CFU). There are generally established guidelines for the maximum CFU that a drug product can contain. [4] Contact plates or sterile swabs can also be used to test for microbes on a surface when compounding sterile products to ensure compliance with USP 797. [5]
As an alternative to traditional methods (membrane-filtration and plate count method) there are rapid microbiological methods (RMM) that correlate to plate counting and give results in less time (minutes or hours instead of days). Soleil by Sievers is an example of a RMM that gives results in 45 minutes and detects biotics/ml thanks to flow cytometry. With Soleil you can save time and costs associated with product release and faster decision making.
Bioburden is also associated with biofouling, where microbes collect on the surface of a device or inside of fan cooled equipment. In healthcare settings, this increases the risk of Healthcare-associated infections (HAIs) or Hospital-acquired infection as pathogens can be spread through contact or through the air to new patients and hospital staff. Fan cooled system are generally avoided in critical care and operating rooms, thus relying on natural convection or liquid cooling to cool devices and equipment. Clean rooms (surgical operating rooms, for example) are also required to maintain positive air pressure so that air may leave those rooms, but contaminated air cannot enter from adjacent spaces. [6] HEPA filters are also used to collect airborne pathogens larger than 0.3 microns.
An agar plate is a Petri dish that contains a growth medium solidified with agar, used to culture microorganisms. Sometimes selective compounds are added to influence growth, such as antibiotics.
A cleanroom or clean room is an engineered space that maintains a very low concentration of airborne particulates. It is well isolated, well controlled from contamination, and actively cleansed. Such rooms are commonly needed for scientific research and in industrial production for all nanoscale processes, such as semiconductor manufacturing. A cleanroom is designed to keep everything from dust to airborne organisms or vaporised particles away from it, and so from whatever material is being handled inside it.
Winemaking, wine-making, or vinification is the production of wine, starting with the selection of the fruit, its fermentation into alcohol, and the bottling of the finished liquid. The history of wine-making stretches over millennia. There is evidence that suggests that the earliest wine production took place in Georgia and Iran around 6000 to 5000 B.C. The science of wine and winemaking is known as oenology. A winemaker may also be called a vintner. The growing of grapes is viticulture and there are many varieties of grapes.
Sterilization refers to any process that removes, kills, or deactivates all forms of life and other biological agents present in or on a specific surface, object, or fluid. Sterilization can be achieved through various means, including heat, chemicals, irradiation, high pressure, and filtration. Sterilization is distinct from disinfection, sanitization, and pasteurization, in that those methods reduce rather than eliminate all forms of life and biological agents present. After sterilization, an object is referred to as being sterile or aseptic.
Bacteriological water analysis is a method of analysing water to estimate the numbers of bacteria present and, if needed, to find out what sort of bacteria they are. It represents one aspect of water quality. It is a microbiological analytical procedure which uses samples of water and from these samples determines the concentration of bacteria. It is then possible to draw inferences about the suitability of the water for use from these concentrations. This process is used, for example, to routinely confirm that water is safe for human consumption or that bathing and recreational waters are safe to use.
A fecal coliform is a facultatively anaerobic, rod-shaped, gram-negative, non-sporulating bacterium. Coliform bacteria generally originate in the intestines of warm-blooded animals. Fecal coliforms are capable of growth in the presence of bile salts or similar surface agents, are oxidase negative, and produce acid and gas from lactose within 48 hours at 44 ± 0.5°C. The term thermotolerant coliform is more correct and is gaining acceptance over "fecal coliform".
In microbiology, colony-forming unit is a unit which estimates the number of microbial cells in a sample that are viable, able to multiply via binary fission under the controlled conditions. Counting with colony-forming units requires culturing the microbes and counts only viable cells, in contrast with microscopic examination which counts all cells, living or dead. The visual appearance of a colony in a cell culture requires significant growth, and when counting colonies, it is uncertain if the colony arose from one cell or a group of cells. Expressing results as colony-forming units reflects this uncertainty.
Limulus amebocyte lysate (LAL) is an aqueous extract of motile blood cells (amebocytes) from the Atlantic horseshoe crab Limulus polyphemus. LAL reacts with bacterial endotoxins such as lipopolysaccharides (LPS), which are components of the bacterial capsule, the outermost membrane of cell envelope of gram-negative bacteria. This reaction is the basis of the LAL test, which is widely used for the detection and quantification of bacterial endotoxins.
A syringe filter is a single-use filter cartridge. It is attached to the end of a syringe for use. Syringe filters may have Luer lock fittings, though not universally so. The use of a needle is optional; where desired it may be fitted to the end of the syringe filter.
In microbiology, streaking is a technique used to isolate a pure strain from a single species of microorganism, often bacteria. Samples can then be taken from the resulting colonies and a microbiological culture can be grown on a new plate so that the organism can be identified, studied, or tested.
Pharmaceutical microbiology is an applied branch of microbiology. It involves the study of microorganisms associated with the manufacture of pharmaceuticals e.g. minimizing the number of microorganisms in a process environment, excluding microorganisms and microbial byproducts like exotoxin and endotoxin from water and other starting materials, and ensuring the finished pharmaceutical product is sterile. Other aspects of pharmaceutical microbiology include the research and development of anti-infective agents, the use of microorganisms to detect mutagenic and carcinogenic activity in prospective drugs, and the use of microorganisms in the manufacture of pharmaceutical products like insulin and human growth hormone.
Plate count agar (PCA), also called standard methods agar (SMA), is a microbiological growth medium commonly used to assess or to monitor "total" or viable bacterial growth of a sample. PCA is not a selective medium.
Indicator organisms are used as a proxy to monitor conditions in a particular environment, ecosystem, area, habitat, or consumer product. Certain bacteria, fungi and helminth eggs are being used for various purposes.
In winemaking, clarification and stabilization are the processes by which insoluble matter suspended in the wine is removed before bottling. This matter may include dead yeast cells (lees), bacteria, tartrates, proteins, pectins, various tannins and other phenolic compounds, as well as pieces of grape skin, pulp, stems and gums. Clarification and stabilization may involve fining, filtration, centrifugation, flotation, refrigeration, pasteurization, and/or barrel maturation and racking.
Indoor bioaerosol is bioaerosol in an indoor environment. Bioaerosols are natural or artificial particles of biological origin suspended in the air. These particles are also referred to as organic dust. Bioaerosols may consist of bacteria, fungi, viruses, microbial toxins, pollen, plant fibers, etc. Size of bioaerosol particles varies from below 1 μm to 100 μm in aerodynamic diameter; viable bioaerosol particles can be suspended in air as single cells or aggregates of microorganism as small as 1–10 μm in size. Since bioaerosols are potentially related to various human health effects and the indoor environment provides a unique exposure situation, concerns about indoor bioaerosols have increased over the last decade.
A dip slide is a test for the presence of microorganisms in liquids. The use of dip slides is the method most frequently used to measure and observe microbial activity in liquid-based systems. It is often used in testing cooling systems. Dip slides are often used to determine the presence of slime forming bacteria in cooling & industrial water systems. The Health and Safety Executive's (HSE) recommends the use of dipslides to monitor the general activity of aerobic bacteria. The dip slide test consists of a sterile culture medium on a plastic carrier that is dipped into the liquid to be sampled. The culture is then incubated, allowing for microbial growth. Most Dip slides consist of 1 - 2 agars attached to a flexible plastic paddle, this allows full contact of the agar onto the desired area for testing. Most Dipslides come in a circular clear shatterproof tube that can be inserted into a dip-slide incubator.
Ultrapure water (UPW), high-purity water or highly purified water (HPW) is water that has been purified to uncommonly stringent specifications. Ultrapure water is a term commonly used in manufacturing to emphasize the fact that the water is treated to the highest levels of purity for all contaminant types, including: organic and inorganic compounds; dissolved and particulate matter; volatile and non-volatile; reactive, and inert; hydrophilic and hydrophobic; and dissolved gases.
Membrane technology encompasses the scientific processes used in the construction and application of membranes. Membranes are used to facilitate the transport or rejection of substances between mediums, and the mechanical separation of gas and liquid streams. In the simplest case, filtration is achieved when the pores of the membrane are smaller than the diameter of the undesired substance, such as a harmful microorganism. Membrane technology is commonly used in industries such as water treatment, chemical and metal processing, pharmaceuticals, biotechnology, the food industry, as well as the removal of environmental pollutants.
A spiral plater is an instrument used to dispense a liquid sample onto a Petri dish in a spiral pattern. Commonly used as part of a CFU count procedure for the purpose of determining the number of microbes in the sample. In this setting, after spiral plating, the Petri dish is incubated for several hours after which the number of colony forming microbes (CFU) is determined. Spiral platers are also used for research, clinical diagnostics and as a method for covering a Petri dish with bacteria before placing antibiotic discs for AST.
In microbiology, the term isolation refers to the separation of a strain from a natural, mixed population of living microbes, as present in the environment, for example in water or soil, or from living beings with skin flora, oral flora or gut flora, in order to identify the microbe(s) of interest. Historically, the laboratory techniques of isolation first developed in the field of bacteriology and parasitology, before those in virology during the 20th century.
https://www.watertechnologies.com/products/analyzers-instruments/sievers-soleil