Box-making game

Last updated

A box-making game (often called just a box game) is a biased positional game where two players alternately pick elements from a family of pairwise-disjoint sets ("boxes"). The first player - called BoxMaker - tries to pick all elements of a single box. The second player - called BoxBreaker - tries to pick at least one element of all boxes.

Contents

The box game was first presented by Paul Erdős and Václav Chvátal. [1] It was solved later by Hamidoune and Las-Vergnas. [2]

Definition

A box game is defined by:

The first player, BoxMaker, picks p balls (from the same or different boxes). Then the second player, BoxBreaker, breaks q boxes. And so on.

BoxMaker wins if he has managed to pick all balls in at least one box, before BoxBreaker managed to break this box. BoxBreaker wins if he has managed to break all the boxes.

Strategies

In general, the optimal strategy for BoxBreaker is to break the boxes with the smallest number of remaining elements. The optimal strategy for BoxMaker is to try to balance the sizes of all boxes. By simulating these strategies, Hamidoune and Las-Vergnas [2] found a sufficient and necessary condition for each player in the (p:q) box game.

For the special case where q=1, each of the following conditions is sufficient: [3] :36–39

Related Research Articles

In game theory, the Nash equilibrium is the most commonly-used solution concept for non-cooperative games. A Nash equilibrium is a situation where no player could gain by changing their own strategy. The idea of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to his model of competition in an oligopoly.

<span class="mw-page-title-main">Secretary problem</span> Mathematical problem involving optimal stopping theory

The secretary problem demonstrates a scenario involving optimal stopping theory that is studied extensively in the fields of applied probability, statistics, and decision theory. It is also known as the marriage problem, the sultan's dowry problem, the fussy suitor problem, the googol game, and the best choice problem. Its solution is also known as the 37% rule.

Lottery mathematics is used to calculate probabilities of winning or losing a lottery game. It is based primarily on combinatorics, particularly the twelvefold way and combinations without replacement.

<span class="mw-page-title-main">Kelly criterion</span> Bet sizing formula for long-term growth

In probability theory, the Kelly criterion is a formula for sizing a sequence of bets by maximizing the long-term expected value of the logarithm of wealth, which is equivalent to maximizing the long-term expected geometric growth rate. John Larry Kelly Jr., a researcher at Bell Labs, described the criterion in 1956.

Combinatorial number theory deals with number theoretic problems which involve combinatorial ideas in their formulations or solutions. Paul Erdős is the main founder of this branch of number theory. Typical topics include covering system, zero-sum problems, various restricted sumsets, and arithmetic progressions in a set of integers. Algebraic or analytic methods are powerful in this field.

The Price of Anarchy (PoA) is a concept in economics and game theory that measures how the efficiency of a system degrades due to selfish behavior of its agents. It is a general notion that can be extended to diverse systems and notions of efficiency. For example, consider the system of transportation of a city and many agents trying to go from some initial location to a destination. Here, efficiency means the average time for an agent to reach the destination. In the 'centralized' solution, a central authority can tell each agent which path to take in order to minimize the average travel time. In the 'decentralized' version, each agent chooses its own path. The Price of Anarchy measures the ratio between average travel time in the two cases.

In decision theory, the odds algorithm is a mathematical method for computing optimal strategies for a class of problems that belong to the domain of optimal stopping problems. Their solution follows from the odds strategy, and the importance of the odds strategy lies in its optimality, as explained below.

Congestion games (CG) are a class of games in game theory. They represent situations which commonly occur in roads, communication networks, oligopoly markets and natural habitats. There is a set of resources ; there are several players who need resources ; each player chooses a subset of these resources ; the delay in each resource is determined by the number of players choosing a subset that contains this resource. The cost of each player is the sum of delays among all resources he chooses. Naturally, each player wants to minimize his own delay; however, each player's choices impose a negative externality on the other players, which may lead to inefficient outcomes.

A positional game is a kind of a combinatorial game for two players. It is described by:

A Maker-Breaker game is a kind of positional game. Like most positional games, it is described by its set of positions/points/elements and its family of winning-sets. It is played by two players, called Maker and Breaker, who alternately take previously untaken elements.

Quantum refereed game in quantum information processing is a class of games in the general theory of quantum games. It is played between two players, Alice and Bob, and arbitrated by a referee. The referee outputs the pay-off for the players after interacting with them for a fixed number of rounds, while exchanging quantum information.

A discrepancy game is a kind of positional game. Like most positional games, it is described by its set of positions/points/elements and a family of sets. It is played by two players, called Balancer and Unbalancer. Each player in turn picks an element. The goal of Balancer is to ensure that every set in is balanced, i.e., the elements in each set are distributed roughly equally between the players. The goal of Unbalancer is to ensure that at least one set is unbalanced.

A strong positional game is a kind of positional game. Like most positional games, it is described by its set of positions and its family of winning-sets. It is played by two players, called First and Second, who alternately take previously untaken positions.

A Waiter-Client game is a kind of positional game. Like most positional games, it is described by its set of positions/points/elements, and its family of winning-sets. It is played by two players, called Waiter and Client. Each round, Waiter picks two elements, Client chooses one element and Waiter gets the other element.

<span class="mw-page-title-main">Avoider-Enforcer game</span> Game where players avoid making losing-sets

An Avoider-Enforcer game is a kind of positional game. Like most positional games, it is described by a set of positions/points/elements and a family of subsets, which are called here the losing-sets. It is played by two players, called Avoider and Enforcer, who take turns picking elements until all elements are taken. Avoider wins if he manages to avoid taking a losing set; Enforcer wins if he manages to make Avoider take a losing set.

A biased positional game is a variant of a positional game. Like most positional games, it is described by a set of positions/points/elements and a family of subsets, which are usually called the winning-sets. It is played by two players who take turns picking elements until all elements are taken. While in the standard game each player picks one element per turn, in the biased game each player takes a different number of elements.

The clique game is a positional game where two players alternately pick edges, trying to occupy a complete clique of a given size.

The arithmetic progression game is a positional game where two players alternately pick numbers, trying to occupy a complete arithmetic progression of a given size.

In a positional game, a pairing strategy is a strategy that a player can use to guarantee victory, or at least force a draw. It is based on dividing the positions on the game-board into disjoint pairs. Whenever the opponent picks a position in a pair, the player picks the other position in the same pair.

Hunter Snevily (1956–2013) was an American mathematician with expertise and contributions in Set theory, Graph theory, Discrete geometry, and Ramsey theory on the integers.

References

  1. Chvátal, V.; Erdös, P. (1978). "Biased Positional Games". Annals of Discrete Mathematics. 2 (C): 221–229. doi:10.1016/S0167-5060(08)70335-2. ISSN   0167-5060.
  2. 1 2 Hamidoune, Yahya Ould; Las Vergnas, Michel (1987-06-01). "A solution to the Box Game". Discrete Mathematics. 65 (2): 157–171. doi: 10.1016/0012-365X(87)90138-5 . ISSN   0012-365X.
  3. Hefetz, Dan; Krivelevich, Michael; Stojaković, Miloš; Szabó, Tibor (2014). Positional Games. Oberwolfach Seminars. Vol. 44. Basel: Birkhäuser Verlag GmbH. ISBN   978-3-0348-0824-8.