A brake wear indicator is used to warn the operator of a vehicle that the brake pad is in need of replacement. The main area of use for this is on motor vehicles with more than three wheels. However brake wear indicators are also useful for brake pads in industrial applications, including wind turbines and cranes. [1] [2]
This article refers to disc brakes as an example, but the principle is the same for other types of friction brakes.
There are different types of wear indicators for brake pads:
Of the alternatives above the first three are simple and cheap, Their lifetime coincides with the service life of the brake pad.
A position sensor is more expensive to implement and designed to survive the service life of the vehicle. It is usually only seen on heavy duty vehicles.
Pads B are mounted on carriers G. These are pushed against the rotor A by the piston D which is pushed by the brake fluid E. This induces wear on the brake pads. The rotor A also experiences some wear, but to a lesser extent than the brake pads. The modules C are joined to the cylinder that houses the piston D and acts as counter-force to the piston D.
Sufficient wear to validate a change of brake pads is considered when one of the following cases are applicable:
F can either be an analog sensor, with an electronic threshold value set to signal an alarm when it has been reached, or an on/off switch, activated at a certain distance.
Under normal conditions, only one of the alternatives are used. Many front wheels on cars are equipped only with wear indicators.
Electrical wear indicator is the alternatives 2 and 4 as displayed above.
The simplest form of this indicator is that the wire 2 is connected to the ground side of a bulb that will light up as soon as contact is made with the rotor. This can result in a flickering light for the indicator.
In some vehicles an electrical wear indicator of type 2 can be doubled and one sensor is on the 50% mark while the other is when the pad is worn out. The 50% mark is stored in the vehicle ECU and can be used by workshops to estimate if the remaining lifetime of the current pads is sufficient until the next regular maintenance or if the pads shall be changed before they have reached end of life in order to save the vehicle owner from an additional visit for changing just the brake pads.
This sensor (4 in the picture) may be present on heavy duty vehicles and special vehicles as well as in industry applications where maintenance is expensive, which means that planning and proactive maintenance is important to be as cost effective as possible at each maintenance event.
A simpler variant of the separate sensor is that it is a simple contact with the same functionality as the sensor of type 2 in the picture. This may be validated in cases where the actual brake pad is in an environment that would destroy any electrical wiring, for instance high temperatures.
A disc brake is a type of brake that uses the calipers to squeeze pairs of pads against a disc or a rotor to create friction. There are two basic types of brake pad friction mechanisms: abrasive friction and adherent friction. This action slows the rotation of a shaft, such as a vehicle axle, either to reduce its rotational speed or to hold it stationary. The energy of motion is converted into heat, which must be dispersed.
A drum brake is a brake that uses friction caused by a set of shoes or pads that press outward against a rotating bowl-shaped part called a brake drum.
A brake is a mechanical device that inhibits motion by absorbing energy from a moving system. It is used for slowing or stopping a moving vehicle, wheel, axle, or to prevent its motion, most often accomplished by means of friction.
In electricity generation, a generator is a device that converts motion-based power or fuel-based power into electric power for use in an external circuit. Sources of mechanical energy include steam turbines, gas turbines, water turbines, internal combustion engines, wind turbines and even hand cranks. The first electromagnetic generator, the Faraday disk, was invented in 1831 by British scientist Michael Faraday. Generators provide nearly all the power for electrical grids.
A bicycle brake reduces the speed of a bicycle or prevents the wheels from moving. The two main types are: rim brakes and disc brakes. Drum brakes are less common on bicycles.
A Hall effect sensor is any sensor incorporating one or more Hall elements, each of which produce a voltage proportional to one axial component of the magnetic field vector B using the Hall effect.
A brushless DC electric motor (BLDC), also known as an electronically commutated motor, is a synchronous motor using a direct current (DC) electric power supply. It uses an electronic controller to switch DC currents to the motor windings producing magnetic fields that effectively rotate in space and which the permanent magnet rotor follows. The controller adjusts the phase and amplitude of the current pulses that control the speed and torque of the motor. It is an improvement on the mechanical commutator (brushes) used in many conventional electric motors.
A DC motor is an electrical motor that uses direct current (DC) to produce mechanical force. The most common types rely on magnetic forces produced by currents in the coils. Nearly all types of DC motors have some internal mechanism, either electromechanical or electronic, to periodically change the direction of current in part of the motor.
Brake fade is the reduction in stopping power that can occur after repeated or sustained application of the brakes of a vehicle, especially in high load or high speed conditions. Brake fade can be a factor in any vehicle that utilizes a friction braking system including automobiles, trucks, motorcycles, airplanes, and bicycles.
In automotive engineering, the master cylinder is a control device that converts force into hydraulic pressure. This device controls slave cylinders located at the other end of the hydraulic brake system.
A hydraulic brake is an arrangement of braking mechanism which uses brake fluid, typically containing glycol ethers or diethylene glycol, to transfer pressure from the controlling mechanism to the braking mechanism.
Brake linings are the consumable surfaces in brake systems, such as drum brakes and disc brakes used in transport vehicles.
Brake pads are a component of disc brakes used in automotive and other applications. Brake pads are composed of steel backing plates with friction material bound to the surface that faces the disc brake rotors.
A hydraulic motor is a mechanical actuator that converts hydraulic pressure and flow into torque and angular displacement (rotation). The hydraulic motor is the rotary counterpart of the hydraulic cylinder as a linear actuator. Most broadly, the category of devices called hydraulic motors has sometimes included those that run on hydropower but in today's terminology the name usually refers more specifically to motors that use hydraulic fluid as part of closed hydraulic circuits in modern hydraulic machinery.
Brake-by-wire technology in the automotive industry is the ability to control brakes through electronic means, without a mechanical connection that transfers force to the physical braking system from a driver input apparatus such as a pedal or lever.
Motorcycle components and systems for a motorcycle are engineered, manufactured, and assembled in order to produce motorcycle models with the desired performance, aesthetics, and cost. The key components of modern motorcycles are presented below.
The yaw system of wind turbines is the component responsible for the orientation of the wind turbine rotor towards the wind.
The yaw bearing is the most crucial and cost intensive component of a yaw system found on modern horizontal axis wind turbines. The yaw bearing must cope with enormous static and dynamic loads and moments during the wind turbine operation, and provide smooth rotation characteristics for the orientation of the nacelle under all weather conditions. It has also to be corrosion and wear resistant and extremely long lasting. It should last for the service life of the wind turbine) while being cost effective.
An electric friction brake, often referred to as just electric brake or electric trailer brake, is a brake controlled by an electric current and can be seen on medium duty trailers like caravans/RVs and consumer-grade car trailers. It is related to the electromagnetic track brake used in railways which also use electric current to directly control the brake force.