Bubble octant

Last updated
A MkIXA Bubble sextant MkIXA Bubble sextant.JPG
A MkIXA Bubble sextant

The bubble octant and bubble sextant are air navigation instruments. Although an instrument may be called a "bubble sextant", it may actually be a bubble octant.

Contents

Use

Ships had long used sextants for navigation, but sextants had problems in aircraft navigation. A ship at sea is on a relatively flat surface and can use the horizon to measure the altitude of celestial objects. However, an aircraft may not have the sea's horizon as a flat reference surface. It may be flying over land where the horizon is formed by mountains of unknown height.

A solution to the problem was to use a bubble to determine the reference plane. The bubble in an airplane is subject to the plane's acceleration. If the plane is in sharp turn, the bubble will be displaced. Consequently, when the navigator is using a bubble sextant, the pilot tries to fly the plane straight and level.

Even when flying straight, a plane is subject to acceleration from air density and wind changes. Consequently, use of a bubble octant requires many readings be taken and then averaged for a more accurate result. Some bubble octants have accessories to make the averaging simpler.

Development

Mk VIII Bubble sextant in use on a Short Sunderland Royal Air Force Operations in Malta, Gibraltar and the Mediterranean, 1940-1945. CM2454.jpg
Mk VIII Bubble sextant in use on a Short Sunderland

Isaac Newton developed the quadrant. The octant was a further improvement. It could measure altitudes of up to 90° above the horizon. The first bubble instruments, which were developed by Gago Coutinho, were bubble sextants that copied the features of an ordinary sextant.

See also

Related Research Articles

<span class="mw-page-title-main">Navigation</span> Process of monitoring and controlling the movement of a craft or vehicle from one place to another

Navigation is a field of study that focuses on the process of monitoring and controlling the movement of a craft or vehicle from one place to another. The field of navigation includes four general categories: land navigation, marine navigation, aeronautic navigation, and space navigation.

<span class="mw-page-title-main">Sextant</span> Tool for angle measurement

A sextant is a doubly reflecting navigation instrument that measures the angular distance between two visible objects. The primary use of a sextant is to measure the angle between an astronomical object and the horizon for the purposes of celestial navigation.

<span class="mw-page-title-main">Celestial navigation</span> Navigation using astronomical objects to determine position

Celestial navigation, also known as astronavigation, is the practice of position fixing using stars and other celestial bodies that enables a navigator to accurately determine their actual current physical position in space or on the surface of the Earth without relying solely on estimated positional calculations, commonly known as "dead reckoning." Celestial navigation is performed without using satellite navigation or other similar modern electronic or digital positioning means.

<span class="mw-page-title-main">Heading indicator</span>

The heading indicator (HI), also known as a directional gyro (DG) or direction indicator (DI), is a flight instrument used in an aircraft to inform the pilot of the aircraft's heading.

<span class="mw-page-title-main">Attitude indicator</span> Flight instrument which displays the aircrafts orientation relative to Earths horizon

The attitude indicator (AI), formerly known as the gyro horizon or artificial horizon, is a flight instrument that informs the pilot of the aircraft orientation relative to Earth's horizon, and gives an immediate indication of the smallest orientation change. The miniature aircraft and horizon bar mimic the relationship of the aircraft relative to the actual horizon. It is a primary instrument for flight in instrument meteorological conditions.

The basic principles of air navigation are identical to general navigation, which includes the process of planning, recording, and controlling the movement of a craft from one place to another.

The backstaff is a navigational instrument that was used to measure the altitude of a celestial body, in particular the Sun or Moon. When observing the Sun, users kept the Sun to their back and observed the shadow cast by the upper vane on a horizon vane. It was invented by the English navigator John Davis, who described it in his book Seaman's Secrets in 1594.

Navigational instruments are instruments used by nautical navigators and pilots as tools of their trade. The purpose of navigation is to ascertain the present position and to determine the speed, direction, etc. to arrive at the port or point of destination.

<span class="mw-page-title-main">Jacob's staff</span> Measurement tool

The term Jacob's staff is used to refer to several things, also known as cross-staff, a ballastella, a fore-staff, a ballestilla, or a balestilha. In its most basic form, a Jacob's staff is a stick or pole with length markings; most staffs are much more complicated than that, and usually contain a number of measurement and stabilization features. The two most frequent uses are:

<span class="mw-page-title-main">Octant (instrument)</span> Measuring instrument used primarily in navigation; type of reflecting instrument

The octant, also called a reflecting quadrant, is a reflecting instrument used in navigation.

In astronomical navigation, the intercept method, also known as Marcq St. Hilaire method, is a method of calculating an observer's position on Earth (geopositioning). It was originally called the azimuth intercept method because the process involves drawing a line which intercepts the azimuth line. This name was shortened to intercept method and the intercept distance was shortened to 'intercept'.

<span class="mw-page-title-main">Longitude by chronometer</span>

Longitude by chronometer is a method, in navigation, of determining longitude using a marine chronometer, which was developed by John Harrison during the first half of the eighteenth century. It is an astronomical method of calculating the longitude at which a position line, drawn from a sight by sextant of any celestial body, crosses the observer's assumed latitude. In order to calculate the position line, the time of the sight must be known so that the celestial position i.e. the Greenwich Hour Angle and Declination, of the observed celestial body is known. All that can be derived from a single sight is a single position line, which can be achieved at any time during daylight when both the sea horizon and the sun are visible. To achieve a fix, more than one celestial body and the sea horizon must be visible. This is usually only possible at dawn and dusk.

<span class="mw-page-title-main">Astrodome (aeronautics)</span> Window dome for astronomical navigation on airplanes

An astrodome is a hemispherical transparent dome that was installed in the cabin roof of an aircraft. Such a dome would allow a trained navigator to perform astronavigation and thereby guide the aircraft at night without the aid of land-based visual references.

<span class="mw-page-title-main">Mariner's astrolabe</span> Nautical navigational instrument

The mariner's astrolabe, also called sea astrolabe, was an inclinometer used to determine the latitude of a ship at sea by measuring the sun's noon altitude (declination) or the meridian altitude of a star of known declination. Not an astrolabe proper, the mariner's astrolabe was rather a graduated circle with an alidade used to measure vertical angles. They were designed to allow for their use on boats in rough water and/or in heavy winds, which astrolabes are ill-equipped to handle. It was invented by the Portuguese people, a nation known for its maritime prowess that dominated the sea for multiple centuries. In the sixteenth century, the instrument was also called a ring.

<span class="mw-page-title-main">Quadrant (instrument)</span> Navigation instrument

A quadrant is an instrument used to measure angles up to 90°. Different versions of this instrument could be used to calculate various readings, such as longitude, latitude, and time of day. Its earliest recorded usage was in ancient India in Rigvedic times by Rishi Atri to observe a solar eclipse. It was then proposed by Ptolemy as a better kind of astrolabe. Several different variations of the instrument were later produced by medieval Muslim astronomers. Mural quadrants were important astronomical instruments in 18th-century European observatories, establishing a use for positional astronomy.

Reflecting instruments are those that use mirrors to enhance their ability to make measurements. In particular, the use of mirrors permits one to observe two objects simultaneously while measuring the angular distance between the objects. While reflecting instruments are used in many professions, they are primarily associated with celestial navigation as the need to solve navigation problems, in particular the problem of the longitude, was the primary motivation in their development.

<span class="mw-page-title-main">Elton's quadrant</span>

An Elton's quadrant is a derivative of the Davis quadrant. It adds an index arm and artificial horizon to the instrument, and was invented by English sea captain John Elton, who patented his design in 1728 and published details of the instrument in the Philosophical Transactions of the Royal Society in 1732.

<span class="mw-page-title-main">Guidance, navigation, and control</span> Branch of engineering

Guidance, navigation and control is a branch of engineering dealing with the design of systems to control the movement of vehicles, especially, automobiles, ships, aircraft, and spacecraft. In many cases these functions can be performed by trained humans. However, because of the speed of, for example, a rocket's dynamics, human reaction time is too slow to control this movement. Therefore, systems—now almost exclusively digital electronic—are used for such control. Even in cases where humans can perform these functions, it is often the case that GNC systems provide benefits such as alleviating operator work load, smoothing turbulence, fuel savings, etc. In addition, sophisticated applications of GNC enable automatic or remote control.

<span class="mw-page-title-main">Spencer, Browning & Rust</span>

Spencer, Browning & Rust was a London firm that manufactured instruments for navigational use during the 18th and 19th centuries. The predecessor company of Spencer and Browning was established by William Spencer and Samuel Browning in 1778, before they entered into partnership with Ebenezer Rust in 1784. After the death of Ebenezer Rust's son, the successor business was known as Spencer, Browning & Co. The firm of Spencer, Browning & Rust made a variety of navigational instruments, including octants and sextants.

<span class="mw-page-title-main">National Science Museum at Maynooth</span> Science museum, Ecclesiology museum in County Kildare , Ireland

The National Science and Ecclesiology Museum at Maynooth is a science museum and museum of ecclesiology, located on the joint campus of St Patrick's College, Maynooth and Maynooth University, Ireland. It is an institution of the college, having begun as an ecclesiological museum.

References