CLIMAT is a code for reporting monthly climatological data assembled at land-based meteorological surface observation sites to data centres. CLIMAT-coded messages contain information on several meteorological variables that are important to monitor characteristics, changes, and variability of climate. Usually these messages are sent and exchanged via the Global Telecommunication System (GTS) of the World Meteorological Organisation (WMO). Modifications of the CLIMAT code are the CLIMAT SHIP and CLIMAT TEMP / CLIMAT TEMP SHIP codes which serve to report monthly climatological data assembled at ocean-based meteorological surface observation sites and at land-/ocean-based meteorological upper-air observation sites, respectively. The monthly values included usually are obtained by averaging observational values of one or several daily observations over the respective month. [1]
CLIMAT-messages contain comprehensive information on a variety of climate-relevant meteorological parameters such as monthly mean temperature, mean daily maximum and minimum temperatures of the month, monthly mean pressure, monthly mean vapour pressure, total precipitation for the month and total sunshine for the month. Information on so-called normal values of these parameters, usually averaged over a period of 30 years for a specific month, can also be transmitted with CLIMAT-messages. Data on extreme values of certain parameters and days of a month with certain parameters exceeding defined thresholds can also be included, as well as information on the number of days of a month where data are missing for a certain parameter. CLIMAT SHIP messages contain information on fewer variables (e.g., total sunshine for the month and extreme values are not included). CLIMAT TEMP (SHIP)-messages contain information on monthly mean temperature, monthly mean geopotential, monthly mean dew-point depression and wind characteristics at specific pressure surfaces. [1]
The CLIMAT code has a fixed but logic syntax that needs to be followed strictly to maintain the ability of a computing device that processes the code to assign the contained information correctly. A CLIMAT-coded message can contain information from more than one synoptic stations and the CLIMAT-coded material for each station is called a “CLIMAT report”. A CLIMAT report is basically structured into five so-called sections (sections 0 to 4) which contain different types of information. If a CLIMAT message is transmitted via the Global Telecommunication System, the message is called a “CLIMAT bulletin”, as some extra coding may be added. [1] [2]
Due to the WMO-led development of the new digital BUFR and CREX coding formats and their implementation to meteorological reporting, CLIMAT coding will continually be transformed in these new formats or even be replaced in the future. Notwithstanding, CLIMAT-based reporting will still play an essential role in obtaining climate information in the upcoming decades, as many national meteorological services will not change to the BUFR format rapidly and climate relevant variables should be monitored uninterruptedly to obtain useful records. The CLIMAT SHIP code is only very seldom used since different, more specific codes for reporting data from fixed ocean locations, such as buoys, exist. [2]
The monthly climatological upper-air data included in CLIMAT TEMP (SHIP) can basically also be derived from daily reports, due to improvements in collection and exchange of the daily TEMP messages and improved real-time quality control, and therefore discontinuing these messages is currently discussed. [3] [4]
The data of CLIMAT reports are broadly used in meteorological and climatological applications, such as the generation of time-series, climate monitoring and climate modelling. Increasing quality and quantity of CLIMAT reports sent from meteorological observation sites ameliorates the generation of these products.
Climate monitoring products generated from CLIMAT messages e.g. are deviations of monthly air temperature compared to the 1961-1990 reference period. [5]
WMO and the Global Climate Observing System (GCOS) disseminate information on CLIMAT reporting via handbooks/guides, [2] [6] and the Manual on Codes (WMO No. 306 [1] ), e.g. via the internet. For simplifying the forming of CLIMAT reports, the WMO World Climate Programme and GCOS have set up a software called “CLIREP” which provides a user interface where data can be inserted and are processed automatically to form a correct CLIMAT message. For the compilation of CLIMAT coded messages a simple text-editor is sufficient as messages can be sent as “.txt”-files. Therefore it is also possible to send CLIMAT messages via email to the GCOS Surface Network (GSN) monitoring centres [7] that monitor and supervise the worldwide CLIMAT reporting. [8]
The World Meteorological Organization(WMO) is a specialized agency of the United Nations responsible for promoting international cooperation on atmospheric science, climatology, hydrology and geophysics.
METAR is a format for reporting weather information. A METAR weather report is predominantly used by aircraft pilots, and by meteorologists, who use aggregated METAR information to assist in weather forecasting.
The World Climate Research Programme (WCRP) is an international programme that helps to coordinate global climate research. The WCRP was established in 1980, under the joint sponsorship of the World Meteorological Organization (WMO) and the International Council for Science (ICSU), and has also been sponsored by the Intergovernmental Oceanographic Commission (IOC) of UNESCO since 1993.
The World Climate Conferences are a series of international meetings, organized by the World Meteorological Organization (WMO), about global climate issues principally global warming in addition to climate research and forecasting.
The climate of Virginia, a state on the east coast of the United States, is considered mild compared to other areas of the United States. Most of Virginia east of the Blue Ridge mountains, the southern part of the Shenandoah Valley, and the Roanoke Valley, has a humid subtropical climate. In the mountainous areas west of the Blue Ridge, the climate becomes warm-summer humid continental and oceanic climate. Severe weather, in the form of tornadoes, tropical cyclones, and winter storms, impacts the state on a regular basis. Central Virginia received significant snowfall of 20 inches in December 2009.
The Global Earth Observation System of Systems (GEOSS) was built by the Group on Earth Observations (GEO) on the basis of a 10-Year Implementation Plan running from 2005 to 2015. GEOSS seeks to connect the producers of environmental data and decision-support tools with the end users of these products, with the aim of enhancing the relevance of Earth observations to global issues. GEOSS aims to produce a global public infrastructure that generates comprehensive, near-real-time environmental data, information and analyses for a wide range of users. The Secretariat Director of Geoss is Barbara Ryan.
The Global Climate Observing System (GCOS) was established in 1992 as an outcome of the Second World Climate Conference, to ensure that the observations and information needed to address climate-related issues are obtained and made available to all potential users. The GCOS is co-sponsored by the World Meteorological Organization (WMO), the Intergovernmental Oceanographic Commission (IOC) of UNESCO, the United Nations Environment Programme (UNEP), and the International Council for Science (ICSU). In order to assess and monitor the adequacy of in-situ observation networks as well as satellite-based observing systems, GCOS regularly reports on the adequacy of the current climate observing system to the United Nations Framework Convention on Climate Change (UNFCCC), and thereby identifies the needs of the current climate observing system.
Aircraft Meteorological Data Relay (AMDAR) is a program initiated by the World Meteorological Organization. AMDAR is used to collect meteorological data worldwide by using commercial aircraft.
A Regional Specialized Meteorological Centre (RSMC) is responsible for the distribution of information, advisories, and warnings regarding the specific program they have a part of, agreed by consensus at the World Meteorological Organization as part of the World Weather Watch.
The Global Ocean Observing System (GOOS) is a global system for sustained observations of the ocean comprising the oceanographic component of the Global Earth Observing System of Systems (GEOSS). GOOS is administrated by the Intergovernmental Oceanographic Commission (IOC), and joins the Global Climate Observing System, GCOS, and Global Terrestrial Observing System, GTOS, as fundamental building blocks of the GEOSS.
In meteorology, a mesonet, portmanteau of mesoscale network, is a network of (typically) automated weather and environmental monitoring stations designed to observe mesoscale meteorological phenomena. Dry lines, squall lines, and sea breezes are examples of phenomena that can be observed by mesonets. Due to the space and time scales associated with mesoscale phenomena, weather stations comprising a mesonet will be spaced closer together and report more frequently than synoptic scale observing networks, such as ASOS. The term mesonet refers to the collective group of these weather stations, which are typically owned and operated by a common entity. Mesonets usually record in situ surface weather observations but some involve other observation platforms, particularly vertical profiles of the planetary boundary layer (PBL).
Surface weather observations are the fundamental data used for safety as well as climatological reasons to forecast weather and issue warnings worldwide. They can be taken manually, by a weather observer, by computer through the use of automated weather stations, or in a hybrid scheme using weather observers to augment the otherwise automated weather station. The ICAO defines the International Standard Atmosphere (ISA), which is the model of the standard variation of pressure, temperature, density, and viscosity with altitude in the Earth's atmosphere, and is used to reduce a station pressure to sea level pressure. Airport observations can be transmitted worldwide through the use of the METAR observing code. Personal weather stations taking automated observations can transmit their data to the United States mesonet through the Citizen Weather Observer Program (CWOP), the UK Met Office through their Weather Observations Website (WOW), or internationally through the Weather Underground Internet site. A thirty-year average of a location's weather observations is traditionally used to determine the station's climate. In the US a network of Cooperative Observers make a daily record of summary weather and sometimes water level information.
The Binary Universal Form for the Representation of meteorological data (BUFR) is a binary data format maintained by the World Meteorological Organization (WMO). The latest version is BUFR Edition 4. BUFR Edition 3 is also considered current for operational use. BUFR was created in 1988 with the goal of replacing the WMO's dozens of character-based, position-driven meteorological codes, such as SYNOP, TEMP and CLIMAT. BUFR was designed to be portable, compact, and universal. Any kind of data can be represented, along with its specific spatial/temporal context and any other associated metadata. In the WMO terminology, BUFR belongs to the category of table-driven code forms, where the meaning of data elements is determined by referring to a set of tables that are kept and maintained separately from the message itself.
The following are considered essential ocean climate variables by the Ocean Observations Panel for Climate (OOPC) that are currently feasible with current observational systems.
The European Climate Assessment and Dataset (ECA&D) is a database of daily meteorological station observations across Europe and is gradually being extended to countries in the Middle East and North Africa. ECA&D has attained the status of Regional Climate Centre for high-resolution observation data in World Meteorological Organization Region VI.
The Meteorological and hydrological service of Croatia is a public entity for meteorology, hydrology and air quality in Croatia.
Homogenization in climate research means the removal of non-climatic changes. Next to changes in the climate itself, raw climate records also contain non-climatic jumps and changes, for example due to relocations or changes in instrumentation. The most used principle to remove these inhomogeneities is the relative homogenization approach in which a candidate station is compared to a reference time series based on one or more neighboring stations. The candidate and reference station(s) experience about the same climate, non-climatic changes that happen only in one station can thus be identified and removed.
The Tuvalu Meteorological Service (TMS) is the principal meteorological observatory of Tuvalu and is responsible for providing weather services to the islands of Tuvalu. A meteorological office was established on Funafuti at the time the islands of Tuvalu were administered as parts of the Gilbert and Ellice Islands colony of the United Kingdom. The meteorological office is now an agency of the government of Tuvalu.
Vladimir Ryabinin, born 23 May 1956 in the city of Korolev in the Moscow Oblast, Russia, is a Russian oceanographer, climatologist, and meteorologist. Since 1 March 2015 he has been the Executive Secretary of the Intergovernmental Oceanographic Commission (IOC) of UNESCO and Assistant Director General of UNESCO.