Cache-oblivious distribution sort

Last updated

The cache-oblivious distribution sort is a comparison-based sorting algorithm. It is similar to quicksort, but it is a cache-oblivious algorithm, designed for a setting where the number of elements to sort is too large to fit in a cache where operations are done. In the external memory model, the number of memory transfers it needs to perform a sort of items on a machine with cache of size and cache lines of length is , under the tall cache assumption that . This number of memory transfers has been shown to be asymptotically optimal for comparison sorts. This distribution sort also achieves the asymptotically optimal runtime complexity of .

Contents

Algorithm

Overview

Distribution sort operates on a contiguous array of elements. To sort the elements, it performs the following:

  1. Partition the array into contiguous subarrays of size , and recursively sort each subarray.
  2. Distribute the elements of the sorted subarrays into buckets each of size at most such that for every i from 1 to q-1, every element of bucket is not larger than any element in This distribution step is the main step of this algorithm, and is covered in more detail below.
  3. Recursively sort each bucket.
  4. Output the concatenation of the buckets.


Distribution step

As mentioned in step 2 above, the goal of the distribution step is to distribute the sorted subarrays into q buckets The distribution step algorithm maintains two invariants. The first is that each bucket has size at most at any time, and any element in bucket is no larger than any element in bucket The second is that every bucket has an associated pivot, a value which is greater than all elements in the bucket.

Initially, the algorithm starts with one empty bucket with pivot . As it fills buckets, it creates new buckets by splitting a bucket into two when it would be made overfull (by having at least elements placed into it). The split is done by performing the linear time median finding algorithm, and partitioning based on this median. The pivot of the lower bucket will be set to the median found, and the pivot of the higher bucket will be set to the same as the bucket before the split. At the end of the distribution step, all elements are in the buckets, and the two invariants will still hold.

To accomplish this, each subarray and bucket will have a state associated with it. The state of a subarray consists of an index next of the next element to be read from the subarray, and a bucket number bnum indicating which bucket index the element should be copied to. By convention, if all elements in the subarray have been distributed. (Note that when we split a bucket, we have to increment all bnum values of all subarrays whose bnum value is greater than the index of the bucket that is split.) The state of a bucket consists of the value of the bucket's pivot, and the number of elements currently in the bucket.

Consider the follow basic strategy: iterate through each subarray, attempting to copy over its element at position next. If the element is smaller than the pivot of bucket bnum, then place it in that bucket, possibly incurring a bucket split. Otherwise, increment bnum until a bucket whose pivot is large enough is found. Though this correctly distributes all elements, it does not exhibit a good cache performance.

Instead, the distribution step is performed in a recursive divide-and-conquer. The step will be performed as a call to the function distribute, which takes three parameters i, j, and m. distribute(i, j, m) will distribute elements from the i-th through (i+m-1)-th subarrays into buckets, starting from . It requires as a precondition that each subarray r in the range has its . The execution of distribute(i, j, m) will guarantee that each . The whole distribution step is distribute. Pseudocode for the implementation of distribute is shown below:

defdistribute(i,j,m:int)->None:"""Distribute through recursive divide-and-conquer."""ifm==1:copy_elems(i,j)else:distribute(i,j,m/2)distribute(i+m/2,j,m/2)distribute(i,j+m/2,m/2)distribute(i+m/2,j+m/2,m/2)

The base case, where m=1, has a call to the subroutine copy_elems. In this base case, all elements from subarray i that belong to bucket j are added at once. If this leads to bucket j having too many elements, it splits the bucket with the procedure described beforehand.

See also

Related Research Articles

<span class="mw-page-title-main">Merge sort</span> Divide and conquer sorting algorithm

In computer science, Merge Sort is an efficient, general-purpose, and comparison-based sorting algorithm. Most implementations produce a stable sort, which means that the relative order of equal elements is the same in the input and output. Merge sort is a divide-and-conquer algorithm that was invented by John von Neumann in 1945. A detailed description and analysis of bottom-up merge sort appeared in a report by Goldstine and von Neumann as early as 1948.

In computer science, radix sort is a non-comparative sorting algorithm. It avoids comparison by creating and distributing elements into buckets according to their radix. For elements with more than one significant digit, this bucketing process is repeated for each digit, while preserving the ordering of the prior step, until all digits have been considered. For this reason, radix sort has also been called bucket sort and digital sort.

<span class="mw-page-title-main">Sorting algorithm</span> Algorithm that arranges lists in order

In computer science, a sorting algorithm is an algorithm that puts elements of a list into an order. The most frequently used orders are numerical order and lexicographical order, and either ascending or descending. Efficient sorting is important for optimizing the efficiency of other algorithms that require input data to be in sorted lists. Sorting is also often useful for canonicalizing data and for producing human-readable output.

<span class="mw-page-title-main">Shellsort</span> Sorting algorithm which uses multiple comparison intervals

Shellsort, also known as Shell sort or Shell's method, is an in-place comparison sort. It can be seen as either a generalization of sorting by exchange or sorting by insertion. The method starts by sorting pairs of elements far apart from each other, then progressively reducing the gap between elements to be compared. By starting with far-apart elements, it can move some out-of-place elements into the position faster than a simple nearest-neighbor exchange. Donald Shell published the first version of this sort in 1959. The running time of Shellsort is heavily dependent on the gap sequence it uses. For many practical variants, determining their time complexity remains an open problem.

<span class="mw-page-title-main">Bucket sort</span> Sorting algorithm

Bucket sort, or bin sort, is a sorting algorithm that works by distributing the elements of an array into a number of buckets. Each bucket is then sorted individually, either using a different sorting algorithm, or by recursively applying the bucket sorting algorithm. It is a distribution sort, a generalization of pigeonhole sort that allows multiple keys per bucket, and is a cousin of radix sort in the most-to-least significant digit flavor. Bucket sort can be implemented with comparisons and therefore can also be considered a comparison sort algorithm. The computational complexity depends on the algorithm used to sort each bucket, the number of buckets to use, and whether the input is uniformly distributed.

In computer science, a selection algorithm is an algorithm for finding the th smallest value in a collection of ordered values, such as numbers. The value that it finds is called the th order statistic. Selection includes as special cases the problems of finding the minimum, median, and maximum element in the collection. Selection algorithms include quickselect, and the median of medians algorithm. When applied to a collection of values, these algorithms take linear time, as expressed using big O notation. For data that is already structured, faster algorithms may be possible; as an extreme case, selection in an already-sorted array takes time .

<span class="mw-page-title-main">Monte Carlo integration</span> Numerical technique

In mathematics, Monte Carlo integration is a technique for numerical integration using random numbers. It is a particular Monte Carlo method that numerically computes a definite integral. While other algorithms usually evaluate the integrand at a regular grid, Monte Carlo randomly chooses points at which the integrand is evaluated. This method is particularly useful for higher-dimensional integrals.

<span class="mw-page-title-main">External sorting</span> Class of sorting algorithms that can handle massive amounts of data

External sorting is a class of sorting algorithms that can handle massive amounts of data. External sorting is required when the data being sorted do not fit into the main memory of a computing device and instead they must reside in the slower external memory, usually a disk drive. Thus, external sorting algorithms are external memory algorithms and thus applicable in the external memory model of computation.

In computing, a cache-oblivious algorithm is an algorithm designed to take advantage of a processor cache without having the size of the cache as an explicit parameter. An optimal cache-oblivious algorithm is a cache-oblivious algorithm that uses the cache optimally. Thus, a cache-oblivious algorithm is designed to perform well, without modification, on multiple machines with different cache sizes, or for a memory hierarchy with different levels of cache having different sizes. Cache-oblivious algorithms are contrasted with explicit loop tiling, which explicitly breaks a problem into blocks that are optimally sized for a given cache.

<span class="mw-page-title-main">Quicksort</span> Divide and conquer sorting algorithm

Quicksort is an efficient, general-purpose sorting algorithm. Quicksort was developed by British computer scientist Tony Hoare in 1959 and published in 1961. It is still a commonly used algorithm for sorting. Overall, it is slightly faster than merge sort and heapsort for randomized data, particularly on larger distributions.

Spreadsort is a sorting algorithm invented by Steven J. Ross in 2002. It combines concepts from distribution-based sorts, such as radix sort and bucket sort, with partitioning concepts from comparison sorts such as quicksort and mergesort. In experimental results it was shown to be highly efficient, often outperforming traditional algorithms such as quicksort, particularly on distributions exhibiting structure and string sorting. There is an open-source implementation with performance analysis and benchmarks, and HTML documentation .

Flashsort is a distribution sorting algorithm showing linear computational complexity O(n) for uniformly distributed data sets and relatively little additional memory requirement. The original work was published in 1998 by Karl-Dietrich Neubert.

Because matrix multiplication is such a central operation in many numerical algorithms, much work has been invested in making matrix multiplication algorithms efficient. Applications of matrix multiplication in computational problems are found in many fields including scientific computing and pattern recognition and in seemingly unrelated problems such as counting the paths through a graph. Many different algorithms have been designed for multiplying matrices on different types of hardware, including parallel and distributed systems, where the computational work is spread over multiple processors.

Samplesort is a sorting algorithm that is a divide and conquer algorithm often used in parallel processing systems. Conventional divide and conquer sorting algorithms partitions the array into sub-intervals or buckets. The buckets are then sorted individually and then concatenated together. However, if the array is non-uniformly distributed, the performance of these sorting algorithms can be significantly throttled. Samplesort addresses this issue by selecting a sample of size s from the n-element sequence, and determining the range of the buckets by sorting the sample and choosing p−1 < s elements from the result. These elements then divide the array into p approximately equal-sized buckets. Samplesort is described in the 1970 paper, "Samplesort: A Sampling Approach to Minimal Storage Tree Sorting", by W. D. Frazer and A. C. McKellar.

<span class="mw-page-title-main">Proxmap sort</span>

ProxmapSort, or Proxmap sort, is a sorting algorithm that works by partitioning an array of data items, or keys, into a number of "subarrays". The name is short for computing a "proximity map," which indicates for each key K the beginning of a subarray where K will reside in the final sorted order. Keys are placed into each subarray using insertion sort. If keys are "well distributed" among the subarrays, sorting occurs in linear time. The computational complexity estimates involve the number of subarrays and the proximity mapping function, the "map key," used. It is a form of bucket and radix sort.

<span class="mw-page-title-main">Median of medians</span> Fast approximate median algorithm

In computer science, the median of medians is an approximate median selection algorithm, frequently used to supply a good pivot for an exact selection algorithm, most commonly quickselect, that selects the kth smallest element of an initially unsorted array. Median of medians finds an approximate median in linear time. Using this approximate median as an improved pivot, the worst-case complexity of quickselect reduces from quadratic to linear, which is also the asymptotically optimal worst-case complexity of any selection algorithm. In other words, the median of medians is an approximate median-selection algorithm that helps building an asymptotically optimal, exact general selection algorithm, by producing good pivot elements.

<span class="mw-page-title-main">Block sort</span> Efficient sorting algorithm that combines insert and merge operations

Block sort, or block merge sort, is a sorting algorithm combining at least two merge operations with an insertion sort to arrive at O(n log n) (see Big O notation) in-place stable sorting time. It gets its name from the observation that merging two sorted lists, A and B, is equivalent to breaking A into evenly sized blocks, inserting each A block into B under special rules, and merging AB pairs.

Funnelsort is a comparison-based sorting algorithm. It is similar to mergesort, but it is a cache-oblivious algorithm, designed for a setting where the number of elements to sort is too large to fit in a cache where operations are done. It was introduced by Matteo Frigo, Charles Leiserson, Harald Prokop, and Sridhar Ramachandran in 1999 in the context of the cache oblivious model.

<span class="mw-page-title-main">Parallel external memory</span>

In computer science, a parallel external memory (PEM) model is a cache-aware, external-memory abstract machine. It is the parallel-computing analogy to the single-processor external memory (EM) model. In a similar way, it is the cache-aware analogy to the parallel random-access machine (PRAM). The PEM model consists of a number of processors, together with their respective private caches and a shared main memory.

Interpolation sort is a sorting algorithm that is a kind of bucket sort. It uses an interpolation formula to assign data to the bucket. A general interpolation formula is:

References