This article needs additional citations for verification .(September 2017) |
Cancelling out is a mathematical process used for removing subexpressions from a mathematical expression, when this removal does not change the meaning or the value of the expression because the subexpressions have equal and opposing effects. [1] For example, a fraction is put in lowest terms by cancelling out the common factors of the numerator and the denominator. [2] As another example, if a×b=a×c, then the multiplicative term a can be canceled out ifa≠0, resulting in the equivalent expression b=c; this is equivalent to dividing through by a.
If the subexpressions are not identical, then it may still be possible to cancel them out partly. For example, in the simple equation 3 + 2y = 8y, both sides actually contain 2y (because 8y is the same as 2y + 6y). Therefore, the 2y on both sides can be cancelled out, leaving 3 = 6y, or y = 0.5. This is equivalent to subtracting 2y from both sides.
At times, cancelling out can introduce limited changes or extra solutions to an equation. For example, given the inequality ab ≥ 3b, it looks like the b on both sides can be cancelled out to give a ≥ 3 as the solution. But cancelling 'naively' like this, will mean we don't get all the solutions (sets of (a, b) satisfying the inequality). This is because if b were a negative number then dividing by a negative would change the ≥ relationship into a ≤ relationship. For example, although 2 is more than 1, –2 is less than –1. Also if b were zero then zero times anything is zero and cancelling out would mean dividing by zero in that case which cannot be done. So in fact, while cancelling works, cancelling out correctly will lead us to three sets of solutions, not just one we thought we had. It will also tell us that our 'naive' solution is only a solution in some cases, not all cases:
So some care may be needed to ensure that cancelling out is done correctly and no solutions are overlooked or incorrect. Our simple inequality has three sets of solutions, which are:
Our 'naïve' solution (that a ≥ 3) would also be wrong sometimes. For example, if b = –5 then a = 4 is not a solution even though 4 ≥ 3, because 4 × (–5) is –20, and 3 x (–5) is –15, and –20 is not ≥ –15.
In more advanced mathematics, cancelling out can be used in the context of infinite series, whose terms can be cancelled out to get a finite sum or a convergent series. In this case, the term telescoping is often used. Considerable care and prevention of errors is often necessary to ensure the amended equation will be valid, or to establish the bounds within which it will be valid, because of the nature of such series.
In computational science, cancelling out is often used for improving the accuracy and the execution time of numerical algorithms.
In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign =. The word equation and its cognates in other languages may have subtly different meanings; for example, in French an équation is defined as containing one or more variables, while in English, any well-formed formula consisting of two expressions related with an equals sign is an equation.
Elementary algebra, also known as college algebra, encompasses the basic concepts of algebra. It is often contrasted with arithmetic: arithmetic deals with specified numbers, whilst algebra introduces variables.
In mathematics, a polynomial is a mathematical expression consisting of indeterminates and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer powers. An example of a polynomial of a single indeterminate x is x2 − 4x + 7. An example with three indeterminates is x3 + 2xyz2 − yz + 1.
In mathematics, a quadratic equation is an equation that can be rearranged in standard form as where x represents an unknown value, and a, b, and c represent known numbers, where a ≠ 0. The numbers a, b, and c are the coefficients of the equation and may be distinguished by respectively calling them, the quadratic coefficient, the linear coefficient and the constant coefficient or free term.
In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation. Other ways of solving quadratic equations, such as completing the square, yield the same solutions.
In mathematics, a system of linear equations is a collection of two or more linear equations involving the same variables. For example,
In mathematics, a negative number represents an opposite. In the real number system, a negative number is a number that is less than zero. Negative numbers are often used to represent the magnitude of a loss or deficiency. A debt that is owed may be thought of as a negative asset. If a quantity, such as the charge on an electron, may have either of two opposite senses, then one may choose to distinguish between those senses—perhaps arbitrarily—as positive and negative. Negative numbers are used to describe values on a scale that goes below zero, such as the Celsius and Fahrenheit scales for temperature. The laws of arithmetic for negative numbers ensure that the common-sense idea of an opposite is reflected in arithmetic. For example, − (−3) = 3 because the opposite of an opposite is the original value.
In mathematics, an implicit equation is a relation of the form where R is a function of several variables. For example, the implicit equation of the unit circle is
In mathematics, a quartic equation is one which can be expressed as a quartic function equaling zero. The general form of a quartic equation is
In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a concept called mathematical fallacy. There is a distinction between a simple mistake and a mathematical fallacy in a proof, in that a mistake in a proof leads to an invalid proof while in the best-known examples of mathematical fallacies there is some element of concealment or deception in the presentation of the proof.
In mathematics, an algebraic equation or polynomial equation is an equation of the form , where P is a polynomial with coefficients in some field, often the field of the rational numbers. For example, is an algebraic equation with integer coefficients and
In mathematics, to solve an equation is to find its solutions, which are the values that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign. When seeking a solution, one or more variables are designated as unknowns. A solution is an assignment of values to the unknown variables that makes the equality in the equation true. In other words, a solution is a value or a collection of values such that, when substituted for the unknowns, the equation becomes an equality. A solution of an equation is often called a root of the equation, particularly but not only for polynomial equations. The set of all solutions of an equation is its solution set.
In mathematics, Farkas' lemma is a solvability theorem for a finite system of linear inequalities. It was originally proven by the Hungarian mathematician Gyula Farkas. Farkas' lemma is the key result underpinning the linear programming duality and has played a central role in the development of mathematical optimization. It is used amongst other things in the proof of the Karush–Kuhn–Tucker theorem in nonlinear programming. Remarkably, in the area of the foundations of quantum theory, the lemma also underlies the complete set of Bell inequalities in the form of necessary and sufficient conditions for the existence of a local hidden-variable theory, given data from any specific set of measurements.
In mathematics, an algebraic expression is an expression built up from constant algebraic numbers, variables, and the algebraic operations. For example, 3x2 − 2xy + c is an algebraic expression. Since taking the square root is the same as raising to the power 1/2, the following is also an algebraic expression:
In applied mathematics, a transcendental equation is an equation over the real numbers that is not algebraic, that is, if at least one of its sides describes a transcendental function. Examples include:
In mathematics, a system of equations is considered overdetermined if there are more equations than unknowns. An overdetermined system is almost always inconsistent when constructed with random coefficients. However, an overdetermined system will have solutions in some cases, for example if some equation occurs several times in the system, or if some equations are linear combinations of the others.
In mathematics, an extraneous solution is one which emerges from the process of solving a problem but is not a valid solution to it. A missing solution is a valid one which is lost during the solution process. Both situations frequently result from performing operations that are not invertible for some or all values of the variables involved, which prevents the chain of logical implications from being bidirectional.
Algebra is the branch of mathematics that studies algebraic structures and the manipulation of statements within those structures. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations such as addition and multiplication.
In mathematics, like terms are summands in a sum that differ only by a numerical factor. Like terms can be regrouped by adding their coefficients. Typically, in a polynomial expression, like terms are those that contain the same variables to the same powers, possibly with different coefficients.
In mathematics and particularly in algebra, a system of equations is called consistent if there is at least one set of values for the unknowns that satisfies each equation in the system—that is, when substituted into each of the equations, they make each equation hold true as an identity. In contrast, a linear or non linear equation system is called inconsistent if there is no set of values for the unknowns that satisfies all of the equations.