Cancer systems biology

Last updated

Cancer systems biology encompasses the application of systems biology approaches to cancer research, in order to study the disease as a complex adaptive system with emerging properties at multiple biological scales. [1] [2] [3] Cancer systems biology represents the application of systems biology approaches to the analysis of how the intracellular networks of normal cells are perturbed during carcinogenesis to develop effective predictive models that can assist scientists and clinicians in the validations of new therapies and drugs. Tumours are characterized by genomic and epigenetic instability that alters the functions of many different molecules and networks in a single cell as well as altering the interactions with the local environment. Cancer systems biology approaches, therefore, are based on the use of computational and mathematical methods to decipher the complexity in tumorigenesis as well as cancer heterogeneity. [4]

Contents

Cancer systems biology encompasses concrete applications of systems biology approaches to cancer research, notably (a) the need for better methods to distill insights from large-scale networks, (b) the importance of integrating multiple data types in constructing more realistic models, (c) challenges in translating insights about tumorigenic mechanisms into therapeutic interventions, and (d) the role of the tumor microenvironment, at the physical, cellular, and molecular levels. [5] Cancer systems biology therefore adopts a holistic view of cancer [6] aimed at integrating its many biological scales, including genetics, signaling networks, [7] epigenetics, [8] cellular behavior, mechanical properties, [9] histology, clinical manifestations and epidemiology. Ultimately, cancer properties at one scale, e.g., histology, are explained by properties at a scale below, e.g., cell behavior.

Cancer systems biology merges traditional basic and clinical cancer research with “exact” sciences, such as applied mathematics, engineering, and physics. It incorporates a spectrum of “omics” technologies (genomics, proteomics, epigenomics, etc.) and molecular imaging, to generate computational algorithms and quantitative models [10] that shed light on mechanisms underlying the cancer process and predict response to intervention. Application of cancer systems biology include but are not limited to- elucidating critical cellular and molecular networks underlying cancer risk, initiation and progression; thereby promoting an alternative viewpoint to the traditional reductionist approach which has typically focused on characterizing single molecular aberrations.

History

Cancer systems biology finds its roots in a number of events and realizations in biomedical research, as well as in technological advances. Historically cancer was identified, understood, and treated as a monolithic disease. It was seen as a “foreign” component that grew as a homogenous mass, and was to be best treated by excision. Besides the continued impact of surgical intervention, this simplistic view of cancer has drastically evolved. In parallel with the exploits of molecular biology, cancer research focused on the identification of critical oncogenes or tumor suppressor genes in the etiology of cancer. These breakthroughs revolutionized our understanding of molecular events driving cancer progression. Targeted therapy may be considered the current pinnacle of advances spawned by such insights.

Despite these advances, many unresolved challenges remain, including the dearth of new treatment avenues for many cancer types, or the unexplained treatment failures and inevitable relapse in cancer types where targeted treatment exists. [11] Such mismatch between clinical results and the massive amounts of data acquired by omics technology highlights the existence of basic gaps in our knowledge of cancer fundamentals. Cancer Systems Biology is steadily improving our ability to organize information on cancer, in order to fill these gaps. Key developments include:

The practice of Cancer Systems Biology requires close physical integration between scientists with diverse backgrounds. Critical large-scale efforts are also underway to train a new workforce fluent in both the languages of biology and applied mathematics. At the translational level, Cancer Systems Biology should engender precision medicine application to cancer treatment.

Resources

High-throughput technologies enable comprehensive genomic analyses of mutations, rearrangements, copy number variations, and methylation at the cellular and tissue levels, as well as robust analysis of RNA and microRNA expression data, protein levels and metabolite levels. [17] [18] [19] [20] [21] [22]

List of High-Throughput Technologies and the Data they generated, with representative databases and publications

TechnologyExperimental dataRepresentative database
DNA-seq, NGSDNA sequences, exome sequences, genomes, genesTCGA, [23] GenBank, [24] DDBJ, [25] Ensembl [26]
Microarray, RNA-seqGene expression levels, microRNA levels, transcriptsGEO, [27] Expression Atlas [28]
MS, iTRAQProtein concentration, phosphorylationsGPMdb, [29] PRIDE, [30] Human Protein Atlas [31]
C-MS, GC-MS, NMRMetabolite levelsHMDB [32]
ChIP-chip, ChIP-seqProtein-DNA interactions, transcript factor binding sitesGEO, [27] TRANSFAC, [33] JASPAR, [34] ENCODE [35]
CLIP-seq, PAR-CLIP, iCLIPMicroRNA-mRNA regulationsStarBase, [36] miRTarBase [37]
Y2H, AP/MS, MaMTH, maPPITProtein-protein interactionsHPRD, [38] BioGRID [39]
Protein microarrayKinase–substrate interactionsTCGA, [23] PhosphoPOINT [40]
SGA, E-MAP, RNAiGenetic interactionsHPRD, [41] BioGRID [42]
SNP genotyping arrayGWAS loci, eQTL, aberrant SNPsGWAS Catalog, [43] dbGAP, [44] dbSNP [45]
LUMIER, data integrationSignaling pathways, metabolic pathways, molecular signaturesTCGA, [23] KEGG, [46] Reactome [47]

Approaches

The computational approaches used in cancer systems biology include new mathematical and computational algorithms that reflect the dynamic interplay between experimental biology and the quantitative sciences. [48] A cancer systems biology approach can be applied at different levels, from an individual cell to a tissue, a patient with a primary tumour and possible metastases, or to any combination of these situations. This approach can integrate the molecular characteristics of tumours at different levels (DNA, RNA, protein, epigenetic, imaging) [49] and different intervals (seconds versus days) with multidisciplinary analysis. [50] One of the major challenges to its success, besides the challenge posed by the heterogeneity of cancer per se, resides in acquiring high-quality data that describe clinical characteristics, pathology, treatment, and outcomes and integrating the data into robust predictive models [51] [19] [20] [21] [22] [52] [53]

Applications

Mathematical modeling can provide useful context for the rational design, validation and prioritization of novel cancer drug targets and their combinations. Network-based modeling and multi-scale modeling have begun to show promise in facilitating the process of effective cancer drug discovery. Using a systems network modeling approach, Schoerberl et al. [54] identified a previously unknown, complementary and potentially superior mechanism of inhibiting the ErbB receptor signaling network. ErbB3 was found to be the most sensitive node, leading to Akt activation; Akt regulates many biological processes, such as proliferation, apoptosis and growth, which are all relevant to tumor progression. [55] This target driven modelling has paved way for first of its kind clinical trials. Bekkal et al. presented a nonlinear model of the dynamics of a cell population divided into proliferative and quiescent compartments. The proliferative phase represents the complete cell cycle (G (1)-S-G (2)-M) of a population committed to divide at its end. The asymptotic behavior of solutions of the nonlinear model is analysed in two cases, exhibiting tissue homeostasis or tumor exponential growth. The model is simulated and its analytic predictions are confirmed numerically. [56] Furthermore, advances in hardware and software have enabled the realization of clinically feasible, quantitative multimodality imaging of tissue pathophysiology. Earlier efforts relating to multimodality imaging of cancer have focused on the integration of anatomical and functional characteristics, such as PET-CT and single-photon emission CT (SPECT-CT), whereas more-recent advances and applications have involved the integration of multiple quantitative, functional measurements (for example, multiple PET tracers, varied MRI contrast mechanisms, and PET-MRI), thereby providing a more-comprehensive characterization of the tumour phenotype. The enormous amount of complementary quantitative data generated by such studies is beginning to offer unique insights into opportunities to optimize care for individual patients. Although important technical optimization and improved biological interpretation of multimodality imaging findings are needed, this approach can already be applied informatively in clinical trials of cancer therapeutics using existing tools. [57]

National funding efforts

In 2004, the US National Cancer Institute launched a program effort on Integrative Cancer Systems Biology [58] to establish Centers for Cancer Systems Biology that focus on the analysis of cancer as a complex biological system. The integration of experimental biology with mathematical modeling will result in new insights in the biology and new approaches to the management of cancer. The program brings clinical and basic cancer researchers together with researchers from mathematics, physics, engineering, information technology, imaging sciences, and computer science to work on unraveling fundamental questions in the biology of cancer. [59]

See also

Related Research Articles

<span class="mw-page-title-main">Bioinformatics</span> Computational analysis of large, complex sets of biological data

Bioinformatics is an interdisciplinary field that develops methods and software tools for understanding biological data, in particular when the data sets are large and complex. As an interdisciplinary field of science, bioinformatics combines biology, chemistry, physics, computer science, information engineering, mathematics and statistics to analyze and interpret the biological data. Bioinformatics has been used for in silico analyses of biological queries using computational and statistical techniques.

In computational biology, gene prediction or gene finding refers to the process of identifying the regions of genomic DNA that encode genes. This includes protein-coding genes as well as RNA genes, but may also include prediction of other functional elements such as regulatory regions. Gene finding is one of the first and most important steps in understanding the genome of a species once it has been sequenced.

<span class="mw-page-title-main">Wellcome Sanger Institute</span> British genomics research institute

The Wellcome Sanger Institute, previously known as The Sanger Centre and Wellcome Trust Sanger Institute, is a non-profit British genomics and genetics research institute, primarily funded by the Wellcome Trust.

In academia, computational immunology is a field of science that encompasses high-throughput genomic and bioinformatics approaches to immunology. The field's main aim is to convert immunological data into computational problems, solve these problems using mathematical and computational approaches and then convert these results into immunologically meaningful interpretations.

<span class="mw-page-title-main">STRING</span>

In molecular biology, STRING is a biological database and web resource of known and predicted protein–protein interactions.

<span class="mw-page-title-main">Therapeutic Targets Database</span> Database of protein targets in drug design

Therapeutic Target Database (TTD) is a pharmaceutical and medical repository constructed by the Innovative Drug Research and Bioinformatics Group (IDRB) at Zhejiang University, China and the Bioinformatics and Drug Design Group at the National University of Singapore. It provides information about known and explored therapeutic protein and nucleic acid targets, the targeted disease, pathway information and the corresponding drugs directed at each of these targets. Detail knowledge about target function, sequence, 3D structure, ligand binding properties, enzyme nomenclature and drug structure, therapeutic class, and clinical development status. TTD is freely accessible without any login requirement.

<span class="mw-page-title-main">Richard M. Durbin</span> British computational biologist

Richard Michael Durbin is a British computational biologist and Al-Kindi Professor of Genetics at the University of Cambridge. He also serves as an associate faculty member at the Wellcome Sanger Institute where he was previously a senior group leader.

Protein function prediction methods are techniques that bioinformatics researchers use to assign biological or biochemical roles to proteins. These proteins are usually ones that are poorly studied or predicted based on genomic sequence data. These predictions are often driven by data-intensive computational procedures. Information may come from nucleic acid sequence homology, gene expression profiles, protein domain structures, text mining of publications, phylogenetic profiles, phenotypic profiles, and protein-protein interaction. Protein function is a broad term: the roles of proteins range from catalysis of biochemical reactions to transport to signal transduction, and a single protein may play a role in multiple processes or cellular pathways.

This microRNA database and microRNA targets databases is a compilation of databases and web portals and servers used for microRNAs and their targets. MicroRNAs (miRNAs) represent an important class of small non-coding RNAs (ncRNAs) that regulate gene expression by targeting messenger RNAs.

<span class="mw-page-title-main">Sean Eddy</span> American professor at Harvard University

Sean Roberts Eddy is Professor of Molecular & Cellular Biology and of Applied Mathematics at Harvard University. Previously he was based at the Janelia Research Campus from 2006 to 2015 in Virginia. His research interests are in bioinformatics, computational biology and biological sequence analysis. As of 2016 projects include the use of Hidden Markov models in HMMER, Infernal Pfam and Rfam.

Pan-cancer analysis aims to examine the similarities and differences among the genomic and cellular alterations found across diverse tumor types. International efforts have performed pan-cancer analysis on exomes and the whole genomes of cancers, the latter including their non-coding regions. In 2018, The Cancer Genome Atlas (TCGA) Research Network used exome, transcriptome, and DNA methylome data to develop an integrated picture of commonalities, differences, and emergent themes across tumor types.

The human interactome is the set of protein–protein interactions that occur in human cells. The sequencing of reference genomes, in particular the Human Genome Project, has revolutionized human genetics, molecular biology, and clinical medicine. Genome-wide association study results have led to the association of genes with most Mendelian disorders, and over 140 000 germline mutations have been associated with at least one genetic disease. However, it became apparent that inherent to these studies is an emphasis on clinical outcome rather than a comprehensive understanding of human disease; indeed to date the most significant contributions of GWAS have been restricted to the “low-hanging fruit” of direct single mutation disorders, prompting a systems biology approach to genomic analysis. The connection between genotype and phenotype remain elusive, especially in the context of multigenic complex traits and cancer. To assign functional context to genotypic changes, much of recent research efforts have been devoted to the mapping of the networks formed by interactions of cellular and genetic components in humans, as well as how these networks are altered by genetic and somatic disease.

Julian John Thurstan Gough is a Group Leader in the Laboratory of Molecular Biology (LMB) of the Medical Research Council (MRC). He was previously a professor of bioinformatics at the University of Bristol.

<span class="mw-page-title-main">Multiomics</span>

Multiomics, multi-omics, integrative omics, "panomics" or "pan-omics" is a biological analysis approach in which the data sets are multiple "omes", such as the genome, proteome, transcriptome, epigenome, metabolome, and microbiome ; in other words, the use of multiple omics technologies to study life in a concerted way. By combining these "omes", scientists can analyze complex biological big data to find novel associations between biological entities, pinpoint relevant biomarkers and build elaborate markers of disease and physiology. In doing so, multiomics integrates diverse omics data to find a coherently matching geno-pheno-envirotype relationship or association. The OmicTools service lists more than 99 softwares related to multiomic data analysis, as well as more than 99 databases on the topic.

Model organism databases (MODs) are biological databases, or knowledgebases, dedicated to the provision of in-depth biological data for intensively studied model organisms. MODs allow researchers to easily find background information on large sets of genes, plan experiments efficiently, combine their data with existing knowledge, and construct novel hypotheses. They allow users to analyse results and interpret datasets, and the data they generate are increasingly used to describe less well studied species. Where possible, MODs share common approaches to collect and represent biological information. For example, all MODs use the Gene Ontology (GO) to describe functions, processes and cellular locations of specific gene products. Projects also exist to enable software sharing for curation, visualization and querying between different MODs. Organismal diversity and varying user requirements however mean that MODs are often required to customize capture, display, and provision of data.

Donna R. Maglott is a staff scientist at the National Center for Biotechnology Information known for her research on large-scale genomics projects, including the mouse genome and development of databases required for genomics research.

Machine learning in bioinformatics is the application of machine learning algorithms to bioinformatics, including genomics, proteomics, microarrays, systems biology, evolution, and text mining.

References

  1. Wang, Edwin. Cancer Systems Biology. Chapman & Hall, 2010
  2. Liu & Lauffenburger. Systems Biomedicine: Concepts and Perspectives. Academic Press, 2009.
  3. Barillot, Emmanuel; Calzone, Laurence; Hupe, Philippe; Vert, Jean-Philippe; Zinovyev, Andrei (2012). Computational Systems Biology of Cancer. Chapman & Hall/CRC Mathematical & Computational Biology. p. 461. ISBN   978-1439831441.
  4. Werner, HM; Mills, GB; Ram, PT (March 2014). "Cancer Systems Biology: a peek into the future of patient care?". Nature Reviews. Clinical Oncology. 11 (3): 167–76. doi:10.1038/nrclinonc.2014.6. PMC   4321721 . PMID   24492837.
  5. Gentles, AJ; Gallahan, D (15 September 2011). "Systems biology: confronting the complexity of cancer". Cancer Research. 71 (18): 5961–4. doi:10.1158/0008-5472.CAN-11-1569. PMC   3174325 . PMID   21896642.
  6. 1 2 Anderson, AR; Quaranta (2008). "Integrative mathematical oncology". Nat Rev Cancer. 8 (3): 227–234. doi:10.1038/nrc2329. PMID   18273038. S2CID   23792776.
  7. Kreeger, PK; Lauffenburger (2010). "Cancer systems biology: A network modeling perspective". Carcinogenesis. 31 (1): 2–8. doi:10.1093/carcin/bgp261. PMC   2802670 . PMID   19861649.
  8. Huang, YW; Kuo, Stoner; Huang, Wang (2011). "An overview of epigenetics and chemoprevention". FEBS Lett. 585 (13): 2129–2136. doi:10.1016/j.febslet.2010.11.002. PMC   3071863 . PMID   21056563.
  9. Spill, Fabian; Bakal, Chris; Mak, Michael (2018). "Mechanical and Systems Biology of Cancer". Computational and Structural Biotechnology Journal. 16: 237–245. arXiv: 1807.08990 . Bibcode:2018arXiv180708990S. doi:10.1016/j.csbj.2018.07.002. PMC   6077126 . PMID   30105089.
  10. 1 2 Lewis, NE; Abdel-Haleem, AM (2013). "The evolution of genome-scale models of cancer metabolism". Front. Physiol. 4: 237. doi: 10.3389/fphys.2013.00237 . PMC   3759783 . PMID   24027532.
  11. Garraway; Jänne (2012). "Circumventing cancer drug resistance in the era of personalized medicine". Cancer Discovery. 2 (3): 214–226. doi: 10.1158/2159-8290.CD-12-0012 . PMID   22585993.
  12. Collins; Barker (2007). "Mapping the cancer genome. Pinpointing the genes involved in cancer will help chart a new course across the complex landscape of human malignancies". Sci Am. 296 (3): 50–57. doi:10.1038/scientificamerican0307-50. PMID   17348159.
  13. Pe'er, Dana; Nir Hacohen (2011). "Principles and Strategies for Developing Network Models in Cancer". Cell. 144 (6): 864–873. doi:10.1016/j.cell.2011.03.001. PMC   3082135 . PMID   21414479.
  14. Tyson, J.J.; Baumann, W.T.; Chen, C.; Verdugo, A.; Tavassoly, I.; Wang, Y.; Weiner, L.M.; Clarke, R. (2011). "Dynamic modelling of oestrogen signalling and cell fate in breast cancer cells". Nat. Rev. Cancer. 11 (7): 523–532. doi:10.1038/nrc3081. PMC   3294292 . PMID   21677677.
  15. Tyson, D.R.; Garbett, S.P.; Frick, P.L.; Quaranta, V (2012). "Fractional proliferation: a method to deconvolve cell population dynamics from single-cell data". Nat. Methods. 9 (9): 923–928. doi:10.1038/nmeth.2138. PMC   3459330 . PMID   22886092.
  16. Traina, Tiffany A.; U. Dugan; B. Higgins; K. Kolinsky; M. Theodoulou; C. A. Hudis; Larry Norton (2010). "Optimizing Chemotherapy Dose and Schedule by Norton-Simon Mathematical Modeling". Breast Disease. 31 (1): 7–18. doi:10.3233/BD-2009-0290. PMC   3228251 . PMID   20519801.
  17. Cancer Genome Atlas Research, Network. (4 July 2013). "Comprehensive molecular characterization of clear cell renal cell carcinoma". Nature. 499 (7456): 43–9. Bibcode:2013Natur.499...43T. doi:10.1038/nature12222. PMC   3771322 . PMID   23792563.
  18. Cancer Genome Atlas Research, Network.; Kandoth, C; Schultz, N; Cherniack, AD; Akbani, R; Liu, Y; Shen, H; Robertson, AG; Pashtan, I; Shen, R; Benz, CC; Yau, C; Laird, PW; Ding, L; Zhang, W; Mills, GB; Kucherlapati, R; Mardis, ER; Levine, DA (2 May 2013). "Integrated genomic characterization of endometrial carcinoma". Nature. 497 (7447): 67–73. Bibcode:2013Natur.497...67T. doi:10.1038/nature12113. PMC   3704730 . PMID   23636398.
  19. 1 2 Sumazin, P; Yang, X; Chiu, HS; Chung, WJ; Iyer, A; Llobet-Navas, D; Rajbhandari, P; Bansal, M; Guarnieri, P; Silva, J; Califano, A (14 October 2011). "An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma". Cell. 147 (2): 370–81. doi:10.1016/j.cell.2011.09.041. PMC   3214599 . PMID   22000015.
  20. 1 2 Tentner, AR; Lee, MJ; Ostheimer, GJ; Samson, LD; Lauffenburger, DA; Yaffe, MB (31 January 2012). "Combined experimental and computational analysis of DNA damage signaling reveals context-dependent roles for Erk in apoptosis and G1/S arrest after genotoxic stress". Molecular Systems Biology. 8: 568. doi:10.1038/msb.2012.1. PMC   3296916 . PMID   22294094.
  21. 1 2 Bozic, I; Antal, T; Ohtsuki, H; Carter, H; Kim, D; Chen, S; Karchin, R; Kinzler, KW; Vogelstein, B; Nowak, MA (26 October 2010). "Accumulation of driver and passenger mutations during tumor progression". Proceedings of the National Academy of Sciences of the United States of America. 107 (43): 18545–50. arXiv: 0912.1627 . Bibcode:2010PNAS..10718545B. doi: 10.1073/pnas.1010978107 . PMC   2972991 . PMID   20876136.
  22. 1 2 Greenman, C; Stephens, P; Smith, R; Dalgliesh, GL; Hunter, C; Bignell, G; Davies, H; Teague, J; Butler, A; Stevens, C; Edkins, S; O'Meara, S; Vastrik, I; Schmidt, EE; Avis, T; Barthorpe, S; Bhamra, G; Buck, G; Choudhury, B; Clements, J; Cole, J; Dicks, E; Forbes, S; Gray, K; Halliday, K; Harrison, R; Hills, K; Hinton, J; Jenkinson, A; Jones, D; Menzies, A; Mironenko, T; Perry, J; Raine, K; Richardson, D; Shepherd, R; Small, A; Tofts, C; Varian, J; Webb, T; West, S; Widaa, S; Yates, A; Cahill, DP; Louis, DN; Goldstraw, P; Nicholson, AG; Brasseur, F; Looijenga, L; Weber, BL; Chiew, YE; DeFazio, A; Greaves, MF; Green, AR; Campbell, P; Birney, E; Easton, DF; Chenevix-Trench, G; Tan, MH; Khoo, SK; Teh, BT; Yuen, ST; Leung, SY; Wooster, R; Futreal, PA; Stratton, MR (8 March 2007). "Patterns of somatic mutation in human cancer genomes". Nature. 446 (7132): 153–8. Bibcode:2007Natur.446..153G. doi:10.1038/nature05610. PMC   2712719 . PMID   17344846.
  23. 1 2 3 "The Cancer Genome Atlas Home Page". The Cancer Genome Atlas - National Cancer Institute. 2018-06-13.
  24. Benson, DA; Clark, K; Karsch-Mizrachi, I; Lipman, DJ; Ostell, J; Sayers, EW (January 2014). "GenBank". Nucleic Acids Research. 42 (Database issue): D32–7. doi:10.1093/nar/gkt1030. PMC   3965104 . PMID   24217914.
  25. Kodama, Y; Mashima, J; Kosuge, T; Katayama, T; Fujisawa, T; Kaminuma, E; Ogasawara, O; Okubo, K; Takagi, T; Nakamura, Y (January 2015). "The DDBJ Japanese Genotype-phenotype Archive for genetic and phenotypic human data". Nucleic Acids Research. 43 (Database issue): D18–22. doi:10.1093/nar/gku1120. PMC   4383935 . PMID   25477381.
  26. Cunningham, F; Amode, MR; Barrell, D; Beal, K; Billis, K; Brent, S; Carvalho-Silva, D; Clapham, P; Coates, G; Fitzgerald, S; Gil, L; Girón, CG; Gordon, L; Hourlier, T; Hunt, SE; Janacek, SH; Johnson, N; Juettemann, T; Kähäri, AK; Keenan, S; Martin, FJ; Maurel, T; McLaren, W; Murphy, DN; Nag, R; Overduin, B; Parker, A; Patricio, M; Perry, E; Pignatelli, M; Riat, HS; Sheppard, D; Taylor, K; Thormann, A; Vullo, A; Wilder, SP; Zadissa, A; Aken, BL; Birney, E; Harrow, J; Kinsella, R; Muffato, M; Ruffier, M; Searle, SM; Spudich, G; Trevanion, SJ; Yates, A; Zerbino, DR; Flicek, P (January 2015). "Ensembl 2015". Nucleic Acids Research. 43 (Database issue): D662–9. doi:10.1093/nar/gku1010. PMC   4383879 . PMID   25352552.
  27. 1 2 Edgar, R; Domrachev, M; Lash, AE (1 January 2002). "Gene Expression Omnibus: NCBI gene expression and hybridization array data repository". Nucleic Acids Research. 30 (1): 207–10. doi:10.1093/nar/30.1.207. PMC   99122 . PMID   11752295.
  28. Petryszak, R; Burdett, T; Fiorelli, B; Fonseca, NA; Gonzalez-Porta, M; Hastings, E; Huber, W; Jupp, S; Keays, M; Kryvych, N; McMurry, J; Marioni, JC; Malone, J; Megy, K; Rustici, G; Tang, AY; Taubert, J; Williams, E; Mannion, O; Parkinson, HE; Brazma, A (January 2014). "Expression Atlas update--a database of gene and transcript expression from microarray- and sequencing-based functional genomics experiments". Nucleic Acids Research. 42 (Database issue): D926–32. doi:10.1093/nar/gkt1270. PMC   3964963 . PMID   24304889.
  29. "GPMDB Proteome Database".
  30. "PRIDE Archive".
  31. Uhlen, M; Oksvold, P; Fagerberg, L; Lundberg, E; Jonasson, K; Forsberg, M; Zwahlen, M; Kampf, C; Wester, K; Hober, S; Wernerus, H; Björling, L; Ponten, F (December 2010). "Towards a knowledge-based Human Protein Atlas". Nature Biotechnology. 28 (12): 1248–50. doi:10.1038/nbt1210-1248. PMID   21139605. S2CID   26688909.
  32. "Human Metabolome Database".
  33. "Gene Regulation". www.gene-regulation.com.
  34. "JASPAR 2018: An open-access database of transcription factor binding profiles".
  35. "ENCODE: Encyclopedia of DNA Elements – ENCODE".
  36. Li, JH; Liu, S; Zhou, H; Qu, LH; Yang, JH (January 2014). "starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data". Nucleic Acids Research. 42 (Database issue): D92–7. doi:10.1093/nar/gkt1248. PMC   3964941 . PMID   24297251.
  37. "MiRTarBase: The experimentally validated microRNA-target interactions database".
  38. Keshava Prasad, TS; Goel, R; Kandasamy, K; Keerthikumar, S; Kumar, S; Mathivanan, S; Telikicherla, D; Raju, R; Shafreen, B; Venugopal, A; Balakrishnan, L; Marimuthu, A; Banerjee, S; Somanathan, DS; Sebastian, A; Rani, S; Ray, S; Harrys Kishore, CJ; Kanth, S; Ahmed, M; Kashyap, MK; Mohmood, R; Ramachandra, YL; Krishna, V; Rahiman, BA; Mohan, S; Ranganathan, P; Ramabadran, S; Chaerkady, R; Pandey, A (January 2009). "Human Protein Reference Database--2009 update". Nucleic Acids Research. 37 (Database issue): D767–72. doi:10.1093/nar/gkn892. PMC   2686490 . PMID   18988627.
  39. Chatr-Aryamontri, A; Breitkreutz, BJ; Oughtred, R; Boucher, L; Heinicke, S; Chen, D; Stark, C; Breitkreutz, A; Kolas, N; O'Donnell, L; Reguly, T; Nixon, J; Ramage, L; Winter, A; Sellam, A; Chang, C; Hirschman, J; Theesfeld, C; Rust, J; Livstone, MS; Dolinski, K; Tyers, M (January 2015). "The BioGRID interaction database: 2015 update". Nucleic Acids Research. 43 (Database issue): D470–8. doi:10.1093/nar/gku1204. PMC   4383984 . PMID   25428363.
  40. "PhosphoSitePlus".
  41. Keshava Prasad, TS; Goel, R; Kandasamy, K; Keerthikumar, S; Kumar, S; Mathivanan, S; Telikicherla, D; Raju, R; Shafreen, B; Venugopal, A; Balakrishnan, L; Marimuthu, A; Banerjee, S; Somanathan, DS; Sebastian, A; Rani, S; Ray, S; Harrys Kishore, CJ; Kanth, S; Ahmed, M; Kashyap, MK; Mohmood, R; Ramachandra, YL; Krishna, V; Rahiman, BA; Mohan, S; Ranganathan, P; Ramabadran, S; Chaerkady, R; Pandey, A (January 2009). "Human Protein Reference Database--2009 update". Nucleic Acids Research. 37 (Database issue): D767–72. doi:10.1093/nar/gkn892. PMC   2686490 . PMID   18988627.
  42. Chatr-Aryamontri, A; Breitkreutz, BJ; Oughtred, R; Boucher, L; Heinicke, S; Chen, D; Stark, C; Breitkreutz, A; Kolas, N; O'Donnell, L; Reguly, T; Nixon, J; Ramage, L; Winter, A; Sellam, A; Chang, C; Hirschman, J; Theesfeld, C; Rust, J; Livstone, MS; Dolinski, K; Tyers, M (January 2015). "The BioGRID interaction database: 2015 update". Nucleic Acids Research. 43 (Database issue): D470–8. doi:10.1093/nar/gku1204. PMC   4383984 . PMID   25428363.
  43. NHGRI, Tony Burdett, Emma Hastings, Dani Welter, SPOT, EMBL-EBI. "GWAS Catalog". www.ebi.ac.uk.
  44. "Home - dbGaP - NCBI". www.ncbi.nlm.nih.gov.
  45. "dbSNP Home Page". www.ncbi.nlm.nih.gov.
  46. "KEGG PATHWAY Database". www.genome.jp.
  47. "Home - Reactome Pathway Database". reactome.org.
  48. Carro, MS; Lim, WK; Alvarez, MJ; Bollo, RJ; Zhao, X; Snyder, EY; Sulman, EP; Anne, SL; Doetsch, F; Colman, H; Lasorella, A; Aldape, K; Califano, A; Iavarone, A (21 January 2010). "The transcriptional network for mesenchymal transformation of brain tumours". Nature. 463 (7279): 318–25. Bibcode:2010Natur.463..318C. doi:10.1038/nature08712. PMC   4011561 . PMID   20032975.
  49. Huang, SS; Clarke, DC; Gosline, SJ; Labadorf, A; Chouinard, CR; Gordon, W; Lauffenburger, DA; Fraenkel, E (2013). "Linking proteomic and transcriptional data through the interactome and epigenome reveals a map of oncogene-induced signaling". PLOS Computational Biology. 9 (2): e1002887. Bibcode:2013PLSCB...9E2887H. doi:10.1371/journal.pcbi.1002887. PMC   3567149 . PMID   23408876.
  50. Pascal, J; Bearer, EL; Wang, Z; Koay, EJ; Curley, SA; Cristini, V (27 August 2013). "Mechanistic patient-specific predictive correlation of tumor drug response with microenvironment and perfusion measurements". Proceedings of the National Academy of Sciences of the United States of America. 110 (35): 14266–71. Bibcode:2013PNAS..11014266P. doi: 10.1073/pnas.1300619110 . PMC   3761643 . PMID   23940372.
  51. Hill, SM; Lu, Y; Molina, J; Heiser, LM; Spellman, PT; Speed, TP; Gray, JW; Mills, GB; Mukherjee, S (1 November 2012). "Bayesian inference of signaling network topology in a cancer cell line". Bioinformatics. 28 (21): 2804–10. doi:10.1093/bioinformatics/bts514. PMC   3476330 . PMID   22923301.
  52. Mills, GB (February 2012). "An emerging toolkit for targeted cancer therapies". Genome Research. 22 (2): 177–82. doi:10.1101/gr.136044.111. PMC   3266025 . PMID   22301131.
  53. Metzcar, John; Wang, Yafei; Heiland, Randy; Macklin, Paul (2019-02-04). "A Review of Cell-Based Computational Modeling in Cancer Biology". JCO Clinical Cancer Informatics. 3 (3): 1–13. doi:10.1200/CCI.18.00069. PMC   6584763 . PMID   30715927.
  54. Schoeberl, B; Kudla, A; Masson, K; Kalra, A; Curley, M; Finn, G; Pace, E; Harms, B; Kim, J; Kearns, J; Fulgham, A; Burenkova, O; Grantcharova, V; Yarar, D; Paragas, V; Fitzgerald, J; Wainszelbaum, M; West, K; Mathews, S; Nering, R; Adiwijaya, B; Garcia, G; Kubasek, B; Moyo, V; Czibere, A; Nielsen, UB; MacBeath, G (2017). "Systems biology driving drug development: from design to the clinical testing of the anti-ErbB3 antibody seribantumab (MM-121)". npj Systems Biology and Applications. 3: 16034. doi:10.1038/npjsba.2016.34. PMC   5516865 . PMID   28725482.
  55. Wang, Z; Deisboeck, TS (February 2014). "Mathematical modeling in cancer drug discovery". Drug Discovery Today. 19 (2): 145–50. doi:10.1016/j.drudis.2013.06.015. PMID   23831857.
  56. Bekkal Brikci, F; Clairambault, J; Ribba, B; Perthame, B (July 2008). "An age-and-cyclin-structured cell population model for healthy and tumoral tissues". Journal of Mathematical Biology. 57 (1): 91–110. doi:10.1007/s00285-007-0147-x. PMID   18064465. S2CID   31756481.
  57. Yankeelov, TE; Abramson, RG; Quarles, CC (November 2014). "Quantitative multimodality imaging in cancer research and therapy". Nature Reviews. Clinical Oncology. 11 (11): 670–80. doi:10.1038/nrclinonc.2014.134. PMC   4909117 . PMID   25113842.
  58. NCI Cancer Bulletin. Feb 24, 2004. V1, 8. p5-6
  59. Gentles; Gallahan (2011). "Systems biology: confronting the complexity of cancer". Cancer Res. 71 (18): 5961–5964. doi:10.1158/0008-5472.CAN-11-1569. PMC   3174325 . PMID   21896642.