Captive power plant

Last updated

A captive power plant, also called autoproducer or embedded generation, is an electricity generation facility used and managed by an industrial or commercial energy user for their own energy consumption. Captive power plants can operate off-grid or they can be connected to the electric grid to exchange excess generation. [1] [2]

Contents

Fields of application

Captive power plants are generally used by power-intensive industries where continuity and quality of energy supply are crucial, such as aluminum smelters, steel plants, chemical plants, etc. [3] However, the radical cost declines for solar power systems have enabled the opportunity for less energy-intensive industries to economically grid defect by coupling solar PV with generators or cogeneration units along with battery systems. [4]

Types of captive power plants

Captive Power Plants can vary significantly based on the fuel sources they utilize and the technologies they employ, allowing companies to tailor their energy generation to specific operational needs and sustainability goals.

One common type of CPP is the fossil fuel-based plant, which relies on traditional energy sources such as coal, natural gas, or diesel. Coal-fired CPPs burn coal to produce steam that drives turbines connected to generators, generating electricity. Natural gas-fired CPPs use gas turbines or reciprocating engines, offering cleaner combustion and higher efficiency compared to coal. Diesel-based CPPs employ diesel engines and are often used for smaller operations or as backup power due to their quick start-up capabilities.

In response to environmental concerns, many companies are adopting renewable energy CPPs. These plants harness energy from sources like solar, wind, biomass, or hydroelectric power. Solar CPPs utilize photovoltaic panels to convert sunlight directly into electricity. Wind-based CPPs use turbines to capture wind energy, suitable for locations with consistent wind patterns. Biomass or biogas CPPs generate power by burning organic materials or utilizing gas produced from waste decomposition, thereby also addressing waste management issues.

Hybrid CPPs combine multiple energy sources to enhance reliability and efficiency. For example, a CPP might integrate solar power with natural gas, using solar energy during peak sunlight hours and switching to natural gas when solar output diminishes. This approach optimizes fuel usage and ensures a consistent power supply. [5]

It is necessary to distinguish conventional CPPs from Combined Heat and Power plants. While CPPs focus primarily on generating electricity for exclusive use, CHPs simultaneously produce electricity and useful thermal energy from the same fuel source. CHPs aim to maximize energy efficiency by capturing waste heat for heating or industrial processes, whereas CPPs may not utilize this waste heat. [5]

By selecting the appropriate type of Captive power plant, companies can achieve greater control over their energy production, reduce dependency on public grids, and align with environmental standards. The choice depends on factors such as fuel availability, cost considerations, technological preferences, and long-term sustainability objectives. Currently, Diesel-driven CPPs hold the largest global CCP market share (35% by 2023), followed by renewable energy and gas. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Electricity generation</span> Process of generating electrical power

Electricity generation is the process of generating electric power from sources of primary energy. For utilities in the electric power industry, it is the stage prior to its delivery to end users or its storage, using for example, the pumped-storage method.

<span class="mw-page-title-main">Power station</span> Facility generating electric power

A power station, also referred to as a power plant and sometimes generating station or generating plant, is an industrial facility for the generation of electric power. Power stations are generally connected to an electrical grid.

<span class="mw-page-title-main">Distributed generation</span> Decentralised electricity generation

Distributed generation, also distributed energy, on-site generation (OSG), or district/decentralized energy, is electrical generation and storage performed by a variety of small, grid-connected or distribution system-connected devices referred to as distributed energy resources (DER).

<span class="mw-page-title-main">Environmental impact of electricity generation</span>

Electric power systems consist of generation plants of different energy sources, transmission networks, and distribution lines. Each of these components can have environmental impacts at multiple stages of their development and use including in their construction, during the generation of electricity, and in their decommissioning and disposal. These impacts can be split into operational impacts and construction impacts. All forms of electricity generation have some form of environmental impact, but coal-fired power is the dirtiest. This page is organized by energy source and includes impacts such as water usage, emissions, local pollution, and wildlife displacement.

<span class="mw-page-title-main">Cogeneration</span> Simultaneous generation of electricity and useful heat

Cogeneration or combined heat and power (CHP) is the use of a heat engine or power station to generate electricity and useful heat at the same time.

<span class="mw-page-title-main">Environmental technology</span> Technical and technological processes for protection of the environment

Environmental technology (envirotech) is the use of engineering and technological approaches to understand and address issues that affect the environment with the aim of fostering environmental improvement. It involves the application of science and technology in the process of addressing environmental challenges through environmental conservation and the mitigation of human impact to the environment.

<span class="mw-page-title-main">Peaking power plant</span> Reserved for high demand times

Peaking power plants, also known as peaker plants, and occasionally just "peakers", are power plants that generally run only when there is a high demand, known as peak demand, for electricity. Because they supply power only occasionally, the power supplied commands a much higher price per kilowatt hour than base load power. Peak load power plants are dispatched in combination with base load power plants, which supply a dependable and consistent amount of electricity, to meet the minimum demand.

Micro combined heat and power, micro-CHP, μCHP or mCHP is an extension of the idea of cogeneration to the single/multi family home or small office building in the range of up to 50 kW. Usual technologies for the production of heat and power in one common process are e.g. internal combustion engines, micro gas turbines, stirling engines or fuel cells.

<span class="mw-page-title-main">Microgeneration</span> Small-scale heating and electric power creation

Microgeneration is the small-scale production of heat or electric power from a "low carbon source," as an alternative or supplement to traditional centralized grid-connected power.

<span class="mw-page-title-main">Hybrid power</span> Combinations between different technologies to generate electric power

Hybrid power are combinations between different technologies to produce power.

<span class="mw-page-title-main">Stand-alone power system</span>

A stand-alone power system, also known as remote area power supply (RAPS), is an off-the-grid electricity system for locations that are not fitted with an electricity distribution system. Typical SAPS include one or more methods of electricity generation, energy storage, and regulation.

A load-following power plant, regarded as producing mid-merit or mid-priced electricity, is a power plant that adjusts its power output as demand for electricity fluctuates throughout the day. Load-following plants are typically in between base load and peaking power plants in efficiency, speed of start-up and shut-down, construction cost, cost of electricity and capacity factor.

<span class="mw-page-title-main">Renewable energy in Finland</span>

Renewable energy in Finland increased from 34% of the total final energy consumption (TFEC) in 2011 to 48% by the end of 2021, primarily driven by bioenergy (38%), hydroelectric power (6.1%), and wind energy (3.3%). In 2021, renewables covered 53% of heating and cooling, 39% of electricity generation, and 20% of the transport sector. By 2020, this growth positioned Finland as having the third highest share of renewables in TFEC among International Energy Agency (IEA) member countries.

<span class="mw-page-title-main">Solar power</span> Conversion of energy from sunlight into electricity

Solar power, also known as solar electricity, is the conversion of energy from sunlight into electricity, either directly using photovoltaics (PV) or indirectly using concentrated solar power. Solar panels use the photovoltaic effect to convert light into an electric current. Concentrated solar power systems use lenses or mirrors and solar tracking systems to focus a large area of sunlight to a hot spot, often to drive a steam turbine.

<span class="mw-page-title-main">Energy in Senegal</span>

As of April 2020, the energy sector in Senegal has an installed capacity of 1431 megawatts (MW). Energy is produced by private operators and sold to the Senelec energy corporation. According to a 2020 report by the International Energy Agency, Senegal had nearly 70% of the country connected to the national grid. Current government strategies for electrification include investments in off-grid solar and connection to the grid.

<span class="mw-page-title-main">Renewable energy in Canada</span>

Renewable energy in Canada represented 17.3% of the Total Energy Supply (TES) in 2020, following natural gas at 39.1% and oil at 32.7% of the TES.

Different methods of electricity generation can incur a variety of different costs, which can be divided into three general categories: 1) wholesale costs, or all costs paid by utilities associated with acquiring and distributing electricity to consumers, 2) retail costs paid by consumers, and 3) external costs, or externalities, imposed on society.

<span class="mw-page-title-main">Energy in Malta</span>

Energy in Malta describes energy production, consumption and import in Malta. Malta has no domestic resource of fossil fuels and no gas distribution network, and relies overwhelmingly on imports of fossil fuels and electricity to cover its energy needs. Since 2015, the Malta–Sicily interconnector allows Malta to be connected to the European power grid and import a significant share of its electricity.

The pattern of energy production and use in Guam is shaped by its location, a remote island. Almost all energy is reliant on imports of petroleum products for use in transport and electricity. Guam has no domestic production of conventional fuels such as oil, natural gas or coal. Its economy is dependent on the import of gasoline and jet fuel for transport and residual fuel oil for electricity. One third of electricity produced is used in commercial settings including the leading industry of tourism. Despite making up about one-tenth of the islands population, the U.S. military uses one-fifth of the island's energy.

Denmark is a leading country in renewable energy production and usage. Renewable energy sources collectively produced 81% of Denmark's electricity generation in 2022, and are expected to provide 100% of national electric power production from 2030. Including energy use in the heating/cooling and transport sectors, Denmark is expected to reach 100% renewable energy in 2050, up from the 34% recorded in 2021.

References

  1. "Captive power plant". www.clarke-energy.com. Clarke Energy. Retrieved 5 September 2016.
  2. "Captive power generation | Norton Rose Fulbright - What is a captive power plant?". www.insideafricalaw.com. Retrieved 5 September 2016.
  3. Mohanta, Dusmanta Kumar; Sadhu, Pradip Kumar; Chakrabarti, R. (February 2007). "Deterministic and stochastic approach for safety and reliability optimization of captive power plant maintenance scheduling using GA/SA-based hybrid techniques: A comparison of results". Reliability Engineering & System Safety. 92 (2): 187–199. doi:10.1016/j.ress.2005.11.062.
  4. Adesanya, Adewale A.; Pearce, Joshua M. (2019-10-01). "Economic viability of captive off-grid solar photovoltaic and diesel hybrid energy systems for the Nigerian private sector". Renewable and Sustainable Energy Reviews. 114: 109348. doi:10.1016/j.rser.2019.109348. ISSN   1364-0321. S2CID   203035662.
  5. 1 2 Waldauf, Daniel (2024-03-11). "Captive Power Plants I PowerUP" . Retrieved 2024-12-03.
  6. Ltd, Coherent Market Insights Pvt (2023-12-21). "Captive Power Plant Market - Share, Size and Industry Analysis". Coherent Market Insights. Retrieved 2024-12-03.