Cartan's criterion

Last updated

In mathematics, Cartan's criterion gives conditions for a Lie algebra in characteristic 0 to be solvable, which implies a related criterion for the Lie algebra to be semisimple. It is based on the notion of the Killing form, a symmetric bilinear form on defined by the formula

Contents

where tr denotes the trace of a linear operator. The criterion was introduced by ÉlieCartan  ( 1894 ). [1]

Cartan's criterion for solvability

Cartan's criterion for solvability states:

A Lie subalgebra of endomorphisms of a finite-dimensional vector space over a field of characteristic zero is solvable if and only if whenever

The fact that in the solvable case follows from Lie's theorem that puts in the upper triangular form over the algebraic closure of the ground field (the trace can be computed after extending the ground field). The converse can be deduced from the nilpotency criterion based on the Jordan–Chevalley decomposition, as explained there.

Applying Cartan's criterion to the adjoint representation gives:

A finite-dimensional Lie algebra over a field of characteristic zero is solvable if and only if (where K is the Killing form).

Cartan's criterion for semisimplicity

Cartan's criterion for semisimplicity states:

A finite-dimensional Lie algebra over a field of characteristic zero is semisimple if and only if the Killing form is non-degenerate.

JeanDieudonné  ( 1953 ) gave a very short proof that if a finite-dimensional Lie algebra (in any characteristic) has a non-degenerate invariant bilinear form and no non-zero abelian ideals, and in particular if its Killing form is non-degenerate, then it is a sum of simple Lie algebras.

Conversely, it follows easily from Cartan's criterion for solvability that a semisimple algebra (in characteristic 0) has a non-degenerate Killing form.

Examples

Cartan's criteria fail in characteristic ; for example:

If a finite-dimensional Lie algebra is nilpotent, then the Killing form is identically zero (and more generally the Killing form vanishes on any nilpotent ideal). The converse is false: there are non-nilpotent Lie algebras whose Killing form vanishes. An example is given by the semidirect product of an abelian Lie algebra V with a 1-dimensional Lie algebra acting on V as an endomorphism b such that b is not nilpotent and Tr(b2)=0.

In characteristic 0, every reductive Lie algebra (one that is a sum of abelian and simple Lie algebras) has a non-degenerate invariant symmetric bilinear form. However the converse is false: a Lie algebra with a non-degenerate invariant symmetric bilinear form need not be a sum of simple and abelian Lie algebras. A typical counterexample is G = L[t]/tnL[t] where n>1, L is a simple complex Lie algebra with a bilinear form (,), and the bilinear form on G is given by taking the coefficient of tn1 of the C[t]-valued bilinear form on G induced by the form on L. The bilinear form is non-degenerate, but the Lie algebra is not a sum of simple and abelian Lie algebras.

Notes

  1. Cartan, Chapitre IV, Théorème 1

Related Research Articles

<span class="mw-page-title-main">Lie algebra</span> Algebraic structure used in analysis

In mathematics, a Lie algebra is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. In other words, a Lie algebra is an algebra over a field for which the multiplication operation is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . A Lie algebra is typically a non-associative algebra. However, every associative algebra gives rise to a Lie algebra, with the Lie bracket defined as the commutator .

<span class="mw-page-title-main">Lie group</span> Group that is also a differentiable manifold with group operations that are smooth

In mathematics, a Lie group is a group that is also a differentiable manifold.

In linear algebra, the trace of a square matrix A, denoted tr(A), is defined to be the sum of elements on the main diagonal of A. The trace is only defined for a square matrix.

<span class="mw-page-title-main">Lie algebra representation</span>

In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space together with a collection of operators on satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators.

<span class="mw-page-title-main">Linear algebraic group</span> Subgroup of the group of invertible n×n matrices

In mathematics, a linear algebraic group is a subgroup of the group of invertible matrices that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of .

<span class="mw-page-title-main">Killing form</span>

In mathematics, the Killing form, named after Wilhelm Killing, is a symmetric bilinear form that plays a basic role in the theories of Lie groups and Lie algebras. Cartan's criteria show that Killing form has a close relationship to the semisimplicity of the Lie algebras.

<span class="mw-page-title-main">Cartan subalgebra</span> Nilpotent subalgebra of a Lie algebra

In mathematics, a Cartan subalgebra, often abbreviated as CSA, is a nilpotent subalgebra of a Lie algebra that is self-normalising. They were introduced by Élie Cartan in his doctoral thesis. It controls the representation theory of a semi-simple Lie algebra over a field of characteristic .

<span class="mw-page-title-main">Semisimple Lie algebra</span> Direct sum of simple Lie algebras

In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras..

In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. Given an affine Lie algebra, one can also form the associated affine Kac-Moody algebra, as described below. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite-dimensional semisimple Lie algebras, is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities.

<span class="mw-page-title-main">Solvable Lie algebra</span>

In mathematics, a Lie algebra is solvable if its derived series terminates in the zero subalgebra. The derived Lie algebra of the Lie algebra is the subalgebra of , denoted

In mathematics, specifically the theory of Lie algebras, Lie's theorem states that, over an algebraically closed field of characteristic zero, if is a finite-dimensional representation of a solvable Lie algebra, then there's a flag of invariant subspaces of with , meaning that for each and i.

<span class="mw-page-title-main">Nilpotent Lie algebra</span>

In mathematics, a Lie algebra is nilpotent if its lower central series terminates in the zero subalgebra. The lower central series is the sequence of subalgebras

In mathematics, specifically linear algebra, the Jordan–Chevalley decomposition, named after Camille Jordan and Claude Chevalley, expresses a linear operator in a unique way as the sum of two other linear operators which are simpler to understand. Specifically, one part is potentially diagonalisable and the other is nilpotent. The two parts are polynomials in the operator, which makes them behave nicely in algebraic manipulations.

In mathematics, a toral subalgebra is a Lie subalgebra of a general linear Lie algebra all of whose elements are semisimple. Equivalently, a Lie algebra is toral if it contains no nonzero nilpotent elements. Over an algebraically closed field, every toral Lie algebra is abelian; thus, its elements are simultaneously diagonalizable.

<span class="mw-page-title-main">Real form (Lie theory)</span>

In mathematics, the notion of a real form relates objects defined over the field of real and complex numbers. A real Lie algebra g0 is called a real form of a complex Lie algebra g if g is the complexification of g0:

<span class="mw-page-title-main">Quadratic Lie algebra</span>

A quadratic Lie algebra is a Lie algebra together with a compatible symmetric bilinear form. Compatibility means that it is invariant under the adjoint representation. Examples of such are semisimple Lie algebras, such as su(n) and sl(n,R).

In mathematics, a regular element of a Lie algebra or Lie group is an element whose centralizer has dimension as small as possible. For example, in a complex semisimple Lie algebra, an element is regular if its centralizer in has dimension equal to the rank of , which in turn equals the dimension of some Cartan subalgebra . An element a Lie group is regular if its centralizer has dimension equal to the rank of .

In algebra, Weyl's theorem on complete reducibility is a fundamental result in the theory of Lie algebra representations. Let be a semisimple Lie algebra over a field of characteristic zero. The theorem states that every finite-dimensional module over is semisimple as a module

In mathematics, semi-simplicity is a widespread concept in disciplines such as linear algebra, abstract algebra, representation theory, category theory, and algebraic geometry. A semi-simple object is one that can be decomposed into a sum of simple objects, and simple objects are those that do not contain non-trivial proper sub-objects. The precise definitions of these words depends on the context.

<span class="mw-page-title-main">Glossary of Lie groups and Lie algebras</span>

This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.

References

See also