Solvable Lie algebra

Last updated

In mathematics, a Lie algebra is solvable if its derived series terminates in the zero subalgebra. The derived Lie algebra of the Lie algebra is the subalgebra of , denoted

Contents

that consists of all linear combinations of Lie brackets of pairs of elements of . The derived series is the sequence of subalgebras

If the derived series eventually arrives at the zero subalgebra, then the Lie algebra is called solvable. [1] The derived series for Lie algebras is analogous to the derived series for commutator subgroups in group theory, and solvable Lie algebras are analogs of solvable groups.

Any nilpotent Lie algebra is a fortiori solvable but the converse is not true. The solvable Lie algebras and the semisimple Lie algebras form two large and generally complementary classes, as is shown by the Levi decomposition. The solvable Lie algebras are precisely those that can be obtained from semidirect products, starting from 0 and adding one dimension at a time. [2]

A maximal solvable subalgebra is called a Borel subalgebra. The largest solvable ideal of a Lie algebra is called the radical.

Characterizations

Let be a finite-dimensional Lie algebra over a field of characteristic 0. The following are equivalent.

with each an ideal in . [4] A sequence of this type is called an elementary sequence.
such that is an ideal in and is abelian. [5]

Properties

Lie's Theorem states that if is a finite-dimensional vector space over an algebraically closed field of characteristic zero, and is a solvable Lie algebra, and if is a representation of over , then there exists a simultaneous eigenvector of the endomorphisms for all elements . [7]

The analogous statement is true for nilpotent Lie algebras provided is contained in the center. Thus, an extension of a solvable algebra by a solvable algebra is solvable, while a central extension of a nilpotent algebra by a nilpotent algebra is nilpotent.

Completely solvable Lie algebras

A Lie algebra is called completely solvable or split solvable if it has an elementary sequence{(V) As above definition} of ideals in from to . A finite-dimensional nilpotent Lie algebra is completely solvable, and a completely solvable Lie algebra is solvable. Over an algebraically closed field a solvable Lie algebra is completely solvable, but the -dimensional real Lie algebra of the group of Euclidean isometries of the plane is solvable but not completely solvable.

A solvable Lie algebra is split solvable if and only if the eigenvalues of are in for all in . [2]

Examples

Abelian Lie algebras

Every abelian Lie algebra is solvable by definition, since its commutator . This includes the Lie algebra of diagonal matrices in , which are of the form

for . The Lie algebra structure on a vector space given by the trivial bracket for any two matrices gives another example.

Nilpotent Lie algebras

Another class of examples comes from nilpotent Lie algebras since the adjoint representation is solvable. Some examples include the upper-diagonal matrices, such as the class of matrices of the form

called the Lie algebra of strictly upper triangular matrices. In addition, the Lie algebra of upper diagonal matrices in form a solvable Lie algebra. This includes matrices of the form

and is denoted .

Solvable but not split-solvable

Let be the set of matrices on the form

Then is solvable, but not split solvable. [2] It is isomorphic with the Lie algebra of the group of translations and rotations in the plane.

Non-example

A semisimple Lie algebra is never solvable since its radical , which is the largest solvable ideal in , is trivial. [1] page 11

Solvable Lie groups

Because the term "solvable" is also used for solvable groups in group theory, there are several possible definitions of solvable Lie group. For a Lie group , there is

See also

Notes

  1. 1 2 3 Humphreys 1972
  2. 1 2 3 4 5 6 Knapp 2002
  3. Knapp 2002 Proposition 1.39.
  4. Knapp 2002 Proposition 1.23.
  5. Fulton & Harris 1991
  6. Knapp 2002 Proposition 1.46.
  7. Knapp 2002 Theorem 1.25.
  8. 1 2 Serre 2001 , Ch. I, § 6, Definition 2.
  9. Knapp 2002 Proposition 1.40.

Related Research Articles

<span class="mw-page-title-main">Lie algebra</span> Algebraic structure used in analysis

In mathematics, a Lie algebra is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. In other words, a Lie algebra is an algebra over a field for which the multiplication operation is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . A Lie algebra is typically a non-associative algebra. However, every associative algebra gives rise to a Lie algebra, consisting of the same vector space with the commutator Lie bracket, .

<span class="mw-page-title-main">Adjoint representation</span> Mathematical term

In mathematics, the adjoint representation of a Lie group G is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if G is , the Lie group of real n-by-n invertible matrices, then the adjoint representation is the group homomorphism that sends an invertible n-by-n matrix to an endomorphism of the vector space of all linear transformations of defined by: .

In mathematics, a triangular matrix is a special kind of square matrix. A square matrix is called lower triangular if all the entries above the main diagonal are zero. Similarly, a square matrix is called upper triangular if all the entries below the main diagonal are zero.

In mathematics, a Lie algebra is reductive if its adjoint representation is completely reducible, hence the name. More concretely, a Lie algebra is reductive if it is a direct sum of a semisimple Lie algebra and an abelian Lie algebra: there are alternative characterizations, given below.

<span class="mw-page-title-main">Cartan subalgebra</span> Nilpotent subalgebra of a Lie algebra

In mathematics, a Cartan subalgebra, often abbreviated as CSA, is a nilpotent subalgebra of a Lie algebra that is self-normalising. They were introduced by Élie Cartan in his doctoral thesis. It controls the representation theory of a semi-simple Lie algebra over a field of characteristic .

<span class="mw-page-title-main">Semisimple Lie algebra</span> Direct sum of simple Lie algebras

In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras.

In representation theory, a branch of mathematics, Engel's theorem states that a finite-dimensional Lie algebra is a nilpotent Lie algebra if and only if for each , the adjoint map

In mathematics, a unipotent elementr of a ring R is one such that r − 1 is a nilpotent element; in other words, (r − 1)n is zero for some n.

In mathematics, specifically the theory of Lie algebras, Lie's theorem states that, over an algebraically closed field of characteristic zero, if is a finite-dimensional representation of a solvable Lie algebra, then there's a flag of invariant subspaces of with , meaning that for each and i.

In mathematics, Cartan's criterion gives conditions for a Lie algebra in characteristic 0 to be solvable, which implies a related criterion for the Lie algebra to be semisimple. It is based on the notion of the Killing form, a symmetric bilinear form on defined by the formula

<span class="mw-page-title-main">Nilpotent Lie algebra</span>

In mathematics, a Lie algebra is nilpotent if its lower central series terminates in the zero subalgebra. The lower central series is the sequence of subalgebras

In ring theory, a branch of mathematics, a semisimple algebra is an associative artinian algebra over a field which has trivial Jacobson radical. If the algebra is finite-dimensional this is equivalent to saying that it can be expressed as a Cartesian product of simple subalgebras.

In the mathematical field of Lie theory, the radical of a Lie algebra is the largest solvable ideal of

In mathematics, specifically linear algebra, the Jordan–Chevalley decomposition, named after Camille Jordan and Claude Chevalley, expresses a linear operator in a unique way as the sum of two other linear operators which are simpler to understand. Specifically, one part is potentially diagonalisable and the other is nilpotent. The two parts are polynomials in the operator, which makes them behave nicely in algebraic manipulations.

In the theory of Lie algebras, an sl2-triple is a triple of elements of a Lie algebra that satisfy the commutation relations between the standard generators of the special linear Lie algebra sl2. This notion plays an important role in the theory of semisimple Lie algebras, especially in regard to their nilpotent orbits.

<span class="mw-page-title-main">Special linear Lie algebra</span>

In mathematics, the special linear Lie algebra of order n over a field , denoted or , is the Lie algebra of all the matrices with trace zero and with the Lie bracket given by the commutator. This algebra is well studied and understood, and is often used as a model for the study of other Lie algebras. The Lie group that it generates is the special linear group.

<span class="mw-page-title-main">Real form (Lie theory)</span>

In mathematics, the notion of a real form relates objects defined over the field of real and complex numbers. A real Lie algebra g0 is called a real form of a complex Lie algebra g if g is the complexification of g0:

In algebra, Weyl's theorem on complete reducibility is a fundamental result in the theory of Lie algebra representations. Let be a semisimple Lie algebra over a field of characteristic zero. The theorem states that every finite-dimensional module over is semisimple as a module

In mathematics, specifically in representation theory, a Borel subalgebra of a Lie algebra is a maximal solvable subalgebra. The notion is named after Armand Borel.

<span class="mw-page-title-main">Glossary of Lie groups and Lie algebras</span>

This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.

References