In the mathematical field of Lie theory, the radical of a Lie algebra is the largest solvable ideal of [1]
The radical, denoted by , fits into the exact sequence
where is semisimple. When the ground field has characteristic zero and has finite dimension, Levi's theorem states that this exact sequence splits; i.e., there exists a (necessarily semisimple) subalgebra of that is isomorphic to the semisimple quotient via the restriction of the quotient map
A similar notion is a Borel subalgebra, which is a (not necessarily unique) maximal solvable subalgebra.
Let be a field and let be a finite-dimensional Lie algebra over . There exists a unique maximal solvable ideal, called the radical, for the following reason.
Firstly let and be two solvable ideals of . Then is again an ideal of , and it is solvable because it is an extension of by . Now consider the sum of all the solvable ideals of . It is nonempty since is a solvable ideal, and it is a solvable ideal by the sum property just derived. Clearly it is the unique maximal solvable ideal.
In mathematics, a Lie algebra is a vector space together with an operation called the Lie bracket, an alternating bilinear map , that satisfies the Jacobi identity. The Lie bracket of two vectors and is denoted . The vector space together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative.
In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space together with a collection of operators on satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators.
In mathematics, a linear algebraic group is a subgroup of the group of invertible matrices that is defined by polynomial equations. An example is the orthogonal group, defined by the relation where is the transpose of .
In mathematics, a Lie algebra is reductive if its adjoint representation is completely reducible, whence the name. More concretely, a Lie algebra is reductive if it is a direct sum of a semisimple Lie algebra and an abelian Lie algebra: there are alternative characterizations, given below.
In mathematics, a Cartan subalgebra, often abbreviated as CSA, is a nilpotent subalgebra of a Lie algebra that is self-normalising. They were introduced by Élie Cartan in his doctoral thesis. It controls the representation theory of a semi-simple Lie algebra over a field of characteristic .
In mathematics, a Lie algebra is semisimple if it is a direct sum of simple Lie algebras.
In Lie theory and representation theory, the Levi decomposition, conjectured by Wilhelm Killing and Élie Cartan and proved by Eugenio Elia Levi (1905), states that any finite-dimensional real Lie algebra g is the semidirect product of a solvable ideal and a semisimple subalgebra. One is its radical, a maximal solvable ideal, and the other is a semisimple subalgebra, called a Levi subalgebra. The Levi decomposition implies that any finite-dimensional Lie algebra is a semidirect product of a solvable Lie algebra and a semisimple Lie algebra.
In mathematics, a Lie algebra is solvable if its derived series terminates in the zero subalgebra. The derived Lie algebra of the Lie algebra is the subalgebra of , denoted
Verma modules, named after Daya-Nand Verma, are objects in the representation theory of Lie algebras, a branch of mathematics.
In mathematics, specifically the theory of Lie algebras, Lie's theorem states that, over an algebraically closed field of characteristic zero, if is a finite-dimensional representation of a solvable Lie algebra, then there's a flag of invariant subspaces of with , meaning that for each and i.
In mathematics, a Lie algebra is nilpotent if its lower central series terminates in the zero subalgebra. The lower central series is the sequence of subalgebras
In ring theory, a branch of mathematics, a semisimple algebra is an associative artinian algebra over a field which has trivial Jacobson radical. If the algebra is finite-dimensional this is equivalent to saying that it can be expressed as a Cartesian product of simple subalgebras.
In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group G with compact subgroup K that arises as the matrix coefficient of a K-invariant vector in an irreducible representation of G. The key examples are the matrix coefficients of the spherical principal series, the irreducible representations appearing in the decomposition of the unitary representation of G on L2(G/K). In this case the commutant of G is generated by the algebra of biinvariant functions on G with respect to K acting by right convolution. It is commutative if in addition G/K is a symmetric space, for example when G is a connected semisimple Lie group with finite centre and K is a maximal compact subgroup. The matrix coefficients of the spherical principal series describe precisely the spectrum of the corresponding C* algebra generated by the biinvariant functions of compact support, often called a Hecke algebra. The spectrum of the commutative Banach *-algebra of biinvariant L1 functions is larger; when G is a semisimple Lie group with maximal compact subgroup K, additional characters come from matrix coefficients of the complementary series, obtained by analytic continuation of the spherical principal series.
In mathematics, a toral subalgebra is a Lie subalgebra of a general linear Lie algebra all of whose elements are semisimple. Equivalently, a Lie algebra is toral if it contains no nonzero nilpotent elements. Over an algebraically closed field, every toral Lie algebra is abelian; thus, its elements are simultaneously diagonalizable.
In algebra, the nilradical of a Lie algebra is a nilpotent ideal, which is as large as possible.
In mathematics, Borel–de Siebenthal theory describes the closed connected subgroups of a compact Lie group that have maximal rank, i.e. contain a maximal torus. It is named after the Swiss mathematicians Armand Borel and Jean de Siebenthal who developed the theory in 1949. Each such subgroup is the identity component of the centralizer of its center. They can be described recursively in terms of the associated root system of the group. The subgroups for which the corresponding homogeneous space has an invariant complex structure correspond to parabolic subgroups in the complexification of the compact Lie group, a reductive algebraic group.
In algebra, Weyl's theorem on complete reducibility is a fundamental result in the theory of Lie algebra representations. Let be a semisimple Lie algebra over a field of characteristic zero. The theorem states that every finite-dimensional module over is semisimple as a module
In mathematics, specifically in representation theory, a Borel subalgebra of a Lie algebra is a maximal solvable subalgebra. The notion is named after Armand Borel.
This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.
In mathematics, the representation theory of semisimple Lie algebras is one of the crowning achievements of the theory of Lie groups and Lie algebras. The theory was worked out mainly by E. Cartan and H. Weyl and because of that, the theory is also known as the Cartan–Weyl theory. The theory gives the structural description and classification of a finite-dimensional representation of a semisimple Lie algebra ; in particular, it gives a way to parametrize irreducible finite-dimensional representations of a semisimple Lie algebra, the result known as the theorem of the highest weight.