Catherine Day (biochemist)

Last updated

Catherine Day
Catherine L. Day MS-5249-1387 (cropped).JPG
Day in 2012
Alma mater Massey University
Scientific career
Thesis

Catherine Louise Day is a New Zealand biochemist. She is currently a professor and was the head of the biochemistry department at the University of Otago. [1]

Contents

Career

After a BSc at Massey University, Day completed a PhD entitled Expression and characterisation of the n-terminal half of human lactoferrin in 1993, [2] also at Massey, before moving to the University of Otago where she rose to professor and head of department. [1]

She has received funding from the Health Research Council of New Zealand [3] and Genesis Oncology Trust [4] and is an associate editor for biochemistry and biophysics of the Royal Society's Open Science Journal. [5]

Selected works

Related Research Articles

<span class="mw-page-title-main">Bcl-2</span> Protein found in humans

Bcl-2, encoded in humans by the BCL2 gene, is the founding member of the Bcl-2 family of regulator proteins that regulate cell death (apoptosis), by either inhibiting (anti-apoptotic) or inducing (pro-apoptotic) apoptosis. It was the first apoptosis regulator identified in any organism.

<span class="mw-page-title-main">Apoptosis regulator BAX</span> Mammalian protein found in Homo sapiens

Apoptosis regulator BAX, also known as bcl-2-like protein 4, is a protein that in humans is encoded by the BAX gene. BAX is a member of the Bcl-2 gene family. BCL2 family members form hetero- or homodimers and act as anti- or pro-apoptotic regulators that are involved in a wide variety of cellular activities. This protein forms a heterodimer with BCL2, and functions as an apoptotic activator. This protein is reported to interact with, and increase the opening of, the mitochondrial voltage-dependent anion channel (VDAC), which leads to the loss in membrane potential and the release of cytochrome c. The expression of this gene is regulated by the tumor suppressor P53 and has been shown to be involved in P53-mediated apoptosis.

<span class="mw-page-title-main">BH3 interacting-domain death agonist</span> Protein-coding gene in the species Homo sapiens

The BH3 interacting-domain death agonist, or BID, gene is a pro-apoptotic member of the Bcl-2 protein family. Bcl-2 family members share one or more of the four characteristic domains of homology entitled the Bcl-2 homology (BH) domains, and can form hetero- or homodimers. Bcl-2 proteins act as anti- or pro-apoptotic regulators that are involved in a wide variety of cellular activities.

p53 upregulated modulator of apoptosis Protein-coding gene in the species Homo sapiens

The p53 upregulated modulator of apoptosis (PUMA) also known as Bcl-2-binding component 3 (BBC3), is a pro-apoptotic protein, member of the Bcl-2 protein family. In humans, the Bcl-2-binding component 3 protein is encoded by the BBC3 gene. The expression of PUMA is regulated by the tumor suppressor p53. PUMA is involved in p53-dependent and -independent apoptosis induced by a variety of signals, and is regulated by transcription factors, not by post-translational modifications. After activation, PUMA interacts with antiapoptotic Bcl-2 family members, thus freeing Bax and/or Bak which are then able to signal apoptosis to the mitochondria. Following mitochondrial dysfunction, the caspase cascade is activated ultimately leading to cell death.

<span class="mw-page-title-main">Phorbol-12-myristate-13-acetate-induced protein 1</span> Protein-coding gene in the species Homo sapiens

Phorbol-12-myristate-13-acetate-induced protein 1 is a protein that in humans is encoded by the PMAIP1 gene, and is also known as Noxa.

<span class="mw-page-title-main">Bcl-2 homologous antagonist killer</span> Protein-coding gene in the species Homo sapiens

Bcl-2 homologous antagonist/killer is a protein that in humans is encoded by the BAK1 gene on chromosome 6. The protein encoded by this gene belongs to the BCL2 protein family. BCL2 family members form oligomers or heterodimers and act as anti- or pro-apoptotic regulators that are involved in a wide variety of cellular activities. This protein localizes to mitochondria, and functions to induce apoptosis. It interacts with and accelerates the opening of the mitochondrial voltage-dependent anion channel, which leads to a loss in membrane potential and the release of cytochrome c. This protein also interacts with the tumor suppressor P53 after exposure to cell stress.

<span class="mw-page-title-main">Bcl-2-associated death promoter</span>

The BCL2 associated agonist of cell death (BAD) protein is a pro-apoptotic member of the Bcl-2 gene family which is involved in initiating apoptosis. BAD is a member of the BH3-only family, a subfamily of the Bcl-2 family. It does not contain a C-terminal transmembrane domain for outer mitochondrial membrane and nuclear envelope targeting, unlike most other members of the Bcl-2 family. After activation, it is able to form a heterodimer with anti-apoptotic proteins and prevent them from stopping apoptosis.

<span class="mw-page-title-main">Bcl-2-like protein 1</span> Protein-coding gene in the species Homo sapiens

Bcl-2-like protein 1 is a protein encoded in humans by the BCL2L1 gene. Through alternative splicing, the gene encodes both of the human proteins Bcl-xL and Bcl-xS.

<span class="mw-page-title-main">MCL1</span> Protein-coding gene in the species Homo sapiens

Induced myeloid leukemia cell differentiation protein Mcl-1 is a protein that in humans is encoded by the MCL1 gene.

<span class="mw-page-title-main">BCL2L11</span> Protein-coding gene in the species Homo sapiens

Bcl-2-like protein 11, commonly called BIM, is a protein that in humans is encoded by the BCL2L11 gene.

<span class="mw-page-title-main">YWHAQ</span> Protein-coding gene in the species Homo sapiens

14-3-3 protein theta is a protein that in humans is encoded by the YWHAQ gene.

<span class="mw-page-title-main">BCL2-related protein A1</span> Protein-coding gene in the species Homo sapiens

Bcl-2-related protein A1 is a protein in humans which is encoded by the BCL2A1 gene.

<span class="mw-page-title-main">Bcl-2-interacting killer</span> Protein-coding gene in the species Homo sapiens

Bcl-2-interacting killer is a protein that in humans is encoded by the BIK gene.

<span class="mw-page-title-main">BCL2L2</span> Protein-coding gene in the species Homo sapiens

Bcl-2-like protein 2 is a 193-amino acid protein that in humans is encoded by the BCL2L2 gene on chromosome 14. It was originally discovered by Leonie Gibson, Suzanne Cory and colleagues at the Walter and Eliza Hall Institute of Medical Research, who called it Bcl-w.

<span class="mw-page-title-main">HRK (gene)</span>

Activator of apoptosis harakiri is a protein that in humans is encoded by the HRK gene.

<span class="mw-page-title-main">BMF (gene)</span> Protein-coding gene in the species Homo sapiens

Bcl-2-modifying factor is a protein that in humans is encoded by the BMF gene.

<span class="mw-page-title-main">BOK (gene)</span> Protein-coding gene in the species Homo sapiens

Bok is a protein-coding gene of the Bcl-2 family that is found in many invertebrates and vertebrates. It induces apoptosis, a special type of cell death. Currently, the precise function of Bok in this process is unknown.

<span class="mw-page-title-main">Bcl-2 family</span>

The Bcl-2 family consists of a number of evolutionarily-conserved proteins that share Bcl-2 homology (BH) domains. The Bcl-2 family is most notable for their regulation of apoptosis, a form of programmed cell death, at the mitochondrion. The Bcl-2 family proteins consists of members that either promote or inhibit apoptosis, and control apoptosis by governing mitochondrial outer membrane permeabilization (MOMP), which is a key step in the intrinsic pathway of apoptosis. A total of 25 genes in the Bcl-2 family were identified by 2008.

<span class="mw-page-title-main">Peter Colman</span>

Peter Malcolm Colman is the head of the structural biology division at the Walter and Eliza Hall Institute of Medical Research in Melbourne, Australia.

<span class="mw-page-title-main">ABT-737</span> Chemical compound

ABT-737 is a small molecule drug that inhibits Bcl-2 and Bcl-xL, two members of the Bcl-2 family of evolutionarily-conserved proteins that share Bcl-2 Homology (BH) domains. First developed as a potential cancer chemotherapy, it was subsequently identified as a senolytic.

References

  1. 1 2 "Profile, Department of Biochemistry, University of Otago, New Zealand". Otago.ac.nz. Retrieved 16 December 2017.
  2. Day, Catherine (1993). Expression and characterisation of the n-terminal half of human lactoferrin (Doctoral thesis). Massey Research Online, Massey University. hdl:10179/4125.
  3. "Professor Catherine Day | Health Research Council". Hrc.govt.nz. Retrieved 16 December 2017.
  4. "Monday 4 December 2017, Otago researchers gain new insights into inflammatory signalling mechanisms implicated in cancer, News and events, Department of Biochemistry, University of Otago, New Zealand". Otago.ac.nz. 4 December 2017. Retrieved 16 December 2017.
  5. "Biochemistry and Biophysics | Open Science". Rsos.royalsocietypublishing.org. Archived from the original on 16 December 2017. Retrieved 16 December 2017.
  6. Chen, Lin; Willis, Simon N.; Wei, Andrew; Smith, Brian J.; Fletcher, Jamie I.; Hinds, Mark G.; Colman, Peter M.; Day, Catherine L.; Adams, Jerry M.; Huang, David C. S. (4 February 2005). "Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function". Molecular Cell. 17 (3): 393–403. doi: 10.1016/j.molcel.2004.12.030 . ISSN   1097-2765. PMID   15694340.
  7. van Delft, Mark F.; Wei, Andrew H.; Mason, Kylie D.; Vandenberg, Cassandra J.; Chen, Lin; Czabotar, Peter E.; Willis, Simon N.; Scott, Clare L.; Day, Catherine L.; Cory, Suzanne; Adams, Jerry M. (November 2006). "The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized". Cancer Cell. 10 (5): 389–399. doi:10.1016/j.ccr.2006.08.027. ISSN   1535-6108. PMC   2953559 . PMID   17097561.
  8. Verhagen, Anne M.; Silke, John; Ekert, Paul G.; Pakusch, Miha; Kaufmann, Hitto; Connolly, Lisa M.; Day, Catherine L.; Tikoo, Anjali; Burke, Richard; Wrobel, Carolyn; Moritz, Robert L. (4 January 2002). "HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins". The Journal of Biological Chemistry. 277 (1): 445–454. doi: 10.1074/jbc.M109891200 . ISSN   0021-9258. PMID   11604410.
  9. Czabotar, Peter E.; Lee, Erinna F.; van Delft, Mark F.; Day, Catherine L.; Smith, Brian J.; Huang, David C. S.; Fairlie, W. Douglas; Hinds, Mark G.; Colman, Peter M. (10 April 2007). "Structural insights into the degradation of Mcl-1 induced by BH3 domains". Proceedings of the National Academy of Sciences of the United States of America. 104 (15): 6217–6222. Bibcode:2007PNAS..104.6217C. doi: 10.1073/pnas.0701297104 . ISSN   0027-8424. PMC   1851040 . PMID   17389404.