Cave popcorn

Last updated
Cave popcorn with frostwork Popcorn-with-Frostwork.jpg
Cave popcorn with frostwork

Cave popcorn, or coralloids, are small nodes of calcite, aragonite or gypsum that form on surfaces in caves, especially limestone caves. [1] [2] They are a common type of speleothem. [1] [2]

Contents

Appearance

The individual nodules of cave popcorn range in size from 5 to 20 mm and may be decorated by other speleothems, especially aragonite needles or frostwork. [1] [2] The nodules tend to grow in clusters on bedrock or the sides of other speleothems. [1] These clusters may terminate suddenly in either an upward or downward direction, forming a stratographic layer. [1] When they terminate in a downward direction, they may appear as flat bottomed formations known as trays. [1]

Individual nodes of popcorn can assume a variety of shapes from round to flattened ear or button like shapes. [2]

The color of cave popcorn is usually white, but various other colors are possible depending on the composition. [2]

Formation

Cave popcorn can form by precipitation. [1] Water seeping through limestone walls or splashing onto them leaves deposits when CO2 loss causes its minerals to precipitate. [2] When formed in this way, the resultant nodules have the characteristics of small balls of flowstone. [1]

Cave popcorn can also form by evaporation in which case it is chalky and white like edible popcorn. [1] In the right conditions, evaporative cave popcorn may grow on the windward side of the surface to which it is attached or appear on the edges of projecting surfaces. [1]

On manmade structures (outside the cave environment)

Popcorn can also occur on concrete structures outside the cave environment; these are classified as calthemite coralloids. Calthemite coralloids also occur in "artificial caves", such as mines, railways or vehicle tunnels where there is a source of lime, mortar or cement from which the calcium ions can be leached.

Coralloids can form by a number of different methods in caves; however, the most common form on concrete is created when a hyperalkaline solution seeps from fine cracks. Due to solution evaporation, deposition of calcium carbonate occurs before any drop can form. The resulting coralloids are small and chalky with a cauliflower appearance.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Stalactite</span> Elongated mineral formation hanging down from a cave ceiling

A stalactite is a mineral formation that hangs from the ceiling of caves, hot springs, or man-made structures such as bridges and mines. Any material that is soluble and that can be deposited as a colloid, or is in suspension, or is capable of being melted, may form a stalactite. Stalactites may be composed of lava, minerals, mud, peat, pitch, sand, sinter, and amberat. A stalactite is not necessarily a speleothem, though speleothems are the most common form of stalactite because of the abundance of limestone caves.

<span class="mw-page-title-main">Speleology</span> Science of cave and karst systems

Speleology is the scientific study of caves and other karst features, as well as their composition, structure, physical properties, history, ecology, and the processes by which they form (speleogenesis) and change over time (speleomorphology). The term speleology is also sometimes applied to the recreational activity of exploring caves, but this is more properly known as caving, potholing, or spelunking. Speleology and caving are often connected, as the physical skills required for in situ study are the same.

<span class="mw-page-title-main">Stalagmite</span> Elongate mineral formation found on a cave floor

A stalagmite is a type of rock formation that rises from the floor of a cave due to the accumulation of material deposited on the floor from ceiling drippings. Stalagmites are typically composed of calcium carbonate, but may consist of lava, mud, peat, pitch, sand, sinter, and amberat.

<span class="mw-page-title-main">Speleothem</span> Structure formed in a cave by the deposition of minerals from water

A speleothem is a geological formation by mineral deposits that accumulate over time in natural caves. Speleothems most commonly form in calcareous caves due to carbonate dissolution reactions. They can take a variety of forms, depending on their depositional history and environment. Their chemical composition, gradual growth, and preservation in caves make them useful paleoclimatic proxies.

<span class="mw-page-title-main">Soda straw</span> Mineral tube formation found in caves

A soda straw is a speleothem in the form of a hollow mineral cylindrical tube. They are also known as tubular stalactites. Soda straws grow in places where water leaches slowly through cracks in rock, such as on the roofs of caves. Soda straws in caves rarely grow more than a few millimetres per year and may average one tenth of a millimetre per year. A soda straw can turn into a stalactite if the hole at the bottom is blocked, or if the water begins flowing on the outside surface of the hollow tube. Soda straws can also form outside the cave environment on exposed concrete surfaces as a type of calthemite, growing significantly faster than those formed on rock.

<span class="mw-page-title-main">Jewel Cave National Monument</span> Cave in the Black Hills of South Dakota, USA

Jewel Cave National Monument contains Jewel Cave, currently the fifth longest cave in the world and second longest cave in the United States, with 220.01 miles (354.07 km) of mapped passageways as of May 2024. It is located approximately 13 miles (21 km) west of the town of Custer in Black Hills of South Dakota. It became a national monument in 1908.

<span class="mw-page-title-main">Dolomite (rock)</span> Sedimentary carbonate rock that contains a high percentage of the mineral dolomite

Dolomite (also known as dolomite rock, dolostone or dolomitic rock) is a sedimentary carbonate rock that contains a high percentage of the mineral dolomite, CaMg(CO3)2. It occurs widely, often in association with limestone and evaporites, though it is less abundant than limestone and rare in Cenozoic rock beds (beds less than about 66 million years in age). One of the first geologists to distinguish dolomite from limestone was Déodat Gratet de Dolomieu; a French mineralogist and geologist whom it is named after. He recognized and described the distinct characteristics of dolomite in the late 18th century, differentiating it from limestone.

<span class="mw-page-title-main">Flowstone</span> Geological phenomenon

Flowstones are sheetlike deposits of calcite or other carbonate minerals, formed where water flows down the walls or along the floors of a cave. They are typically found in "solution caves", in limestone, where they are the most common speleothem. However, they may form in any type of cave where water enters that has picked up dissolved minerals. Flowstones are formed via the degassing of vadose percolation waters.

<span class="mw-page-title-main">Efflorescence</span> Migration of a salt to the surface of a porous material

In chemistry, efflorescence is the migration of a salt to the surface of a porous material, where it forms a coating. The essential process involves the dissolving of an internally held salt in water or occasionally, in another solvent. The water, with the salt now held in solution, migrates to the surface, then evaporates, leaving a coating of the salt.

<span class="mw-page-title-main">Cave of the Mounds</span> Natural limestone cave in Wisconsin

Cave of the Mounds, a natural limestone cave located near Blue Mounds, Wisconsin, United States, is named for two nearby hills called the Blue Mounds. It is located in the southern slope of the east hill. The cave's beauty comes from its many varieties of mineral formations called speleothems. The Chicago Academy of Sciences considers the Cave of the Mounds to be "the significant cave of the upper Midwest" because of its beauty, and it is promoted as the "jewel box" of major American caves. In 1987, the United States Department of the Interior and the National Park Service designated the cave as a National Natural Landmark.

<span class="mw-page-title-main">Anthodite</span> Speleothems composed of long needle-like crystals situated in clusters

Anthodites (Greek ἄνθος ánthos, "flower", -ode, adjectival combining form, -ite adjectival suffix) are speleothems (cave formations) composed of long needle-like crystals situated in clusters which radiate outward from a common base. The "needles" may be quill-like or feathery. Most anthodites are made of the mineral aragonite (a variety of calcium carbonate, CaCO3), although some are composed of gypsum (CaSO4·2H2O).

<span class="mw-page-title-main">Frostwork</span> Snowflake-like speleothem

In geology, frostwork is a type of speleothem with acicular ("needle-like") growths almost always composed of aragonite or calcite replaced aragonite. It is a variety of anthodite. Frostwork can also be made of opal or gypsum. In some caves frostwork may grow on top of cave popcorn or boxwork.

<span class="mw-page-title-main">Rimstone</span> Cave formation

Rimstone, also called gours, is a type of speleothem in the form of a stone dam. Rimstone is made up of calcite and other minerals that build up in cave pools. The formation created, which looks like stairs, often extends into flowstone above or below the original rimstone. Often, rimstone is covered with small, micro-gours on horizontal surfaces. Rimstone basins may form terraces that extend over hundreds of feet, with single basins known up to 200 feet long from Tham Xe Biang Fai in Laos.

<span class="mw-page-title-main">Cave pearl</span> Spherical speleothem concreted concentrically

A cave pearl is a small, usually spherical, speleothem found in limestone caves. Cave pearls are formed by a concretion of calcium salts that form concentric layers around a nucleus. Exposure to moving water polishes the surface of cave pearls, making them glossy; if exposed to the air, cave pearls can degrade and appear rough.

<span class="mw-page-title-main">Pettyjohn Cave</span> Cave in Georgia (US)

Pettyjohn Cave is a karst cave located in Walker County, Georgia on the east side of Pigeon Mountain in the Appalachian Plateau of Northwest Georgia. It has a surveyed length of 31,490 ft and reaches a depth of 235 ft. The cave is accessible via a path from a gravel parking area on the side of Rocky Lane. Out of the 242 listed, it is 119th longest cave in the United States as declared by the Georgia Speleological Survey.

<span class="mw-page-title-main">Solutional cave</span> Type of cave

A solutional cave, solution cave, or karst cave is a cave usually formed in the soluble rock limestone. It is the most frequently occurring type of cave. It can also form in other rocks, including chalk, dolomite, marble, salt beds, and gypsum.

<span class="mw-page-title-main">Concrete degradation</span> Damage to concrete affecting its mechanical strength and its durability

Concrete degradation may have many different causes. Concrete is mostly damaged by the corrosion of reinforcement bars due to the carbonatation of hardened cement paste or chloride attack under wet conditions. Chemical damage is caused by the formation of expansive products produced by chemical reactions, by aggressive chemical species present in groundwater and seawater, or by microorganisms Other damaging processes can also involve calcium leaching by water infiltration, physical phenomena initiating cracks formation and propagation, fire or radiant heat, aggregate expansion, sea water effects, leaching, and erosion by fast-flowing water.

<span class="mw-page-title-main">Calcite rafts</span> Cave-crystallized calcite crusts

Calcite crystals form on the surface of quiescent bodies of water, even when the bulk water is not supersaturated with respect to calcium carbonate. The crystals grow, attach to one other and appear to be floating rafts of a white, opaque material. The floating materials have been referred to as calcite rafts or "leopard spots".

Coralloid (coral-shaped) may refer to:

<span class="mw-page-title-main">Calthemite</span> Secondary calcium carbonate deposit growing under man-made structures

Calthemite is a secondary deposit, derived from concrete, lime, mortar or other calcareous material outside the cave environment. Calthemites grow on or under man-made structures and mimic the shapes and forms of cave speleothems, such as stalactites, stalagmites, flowstone etc. Calthemite is derived from the Latin calx "lime" + Latin < Greek théma, "deposit" meaning ‘something laid down’, and the Latin –ita < Greek -itēs – used as a suffix indicating a mineral or rock. The term "speleothem", due to its definition can only be used to describe secondary deposits in caves and does not include secondary deposits outside the cave environment.

References

  1. 1 2 3 4 5 6 7 8 9 10 Palmer, Arthur N. (2007). Cave Geology. Dayton, OH: CAVE BOOKS. p. 288. ISBN   978-0-939748-66-2.
  2. 1 2 3 4 5 6 Hill, Carol; Forti, Paolo (1997). Cave Minerals of the World (Second Edition ed.). Huntsville, AL: National Speleological Society. pp. 59–61. ISBN   1-879961-07-5.