Centurion Reactor

Last updated

The term "Centurion Reactor" refers to a future class of commercial nuclear power reactors designed for, and licensed to operate for periods of time of one hundred years or longer - thus the term "centurion". There currently are no Centurion Reactors operating in the world. This article provides a brief overview of the Centurion Reactor concept, the technical challenges associated with achieving such longevity, and some of the business and societal issues surrounding deployment of Centurion Reactors.

Contents

Existing licenses

Commercial nuclear power plants in the United States are currently licensed, as stipulated by the Atomic Energy Act, for operating lifetimes of no more forty years. In October, 2009, ninety-three of the 104 operating nuclear power plants in the U.S. had either been issued, had applied for, or had indicated they would apply for operating license extensions of twenty years. Thus the majority of the U.S. commercial nuclear power fleet will operate for sixty years or possibly longer.

Demand for longevity

Weinberg [1] noted the "trend toward nuclear reactor immortality", and advocated that "longevity" be a critical design criterion in future nuclear power plants. More recently, Greene [2] has elaborated on the challenges of simply extending plant lifetimes to 100 years. The limits to nuclear power plant lifetime will be determined by both technical and economic considerations, and achieving such extended lifetimes will require innovative business and financial arrangement.

Advantages of longevity

Current-generation commercial nuclear power plants (so-called "Gen III" plants) typically produce electricity at a busbar cost of 2-3 cents per kilowatt-hr after the initial capital cost of the plant is amortized. The typical amortization period for a commercial nuclear power plant is twenty years. Thus a Centurion Reactor could theoretically produce electricity at a cost of a few cents per kilowatt-hr for eighty years or longer after the initial plant investment is recovered. The press to extend the operating lifetime of commercial power plants is driven by fundamental investment economics, land use considerations, and social justice considerations.

Technical challenges

The technical challenges associated with achieving Centurion Reactors lie principally in the realm of materials science. Current Gen-III nuclear plant operating lifetimes appear to be limited primarily by long-term radiation-induced ageing phenomena in the reactor pressure vessel, primary coolant system piping, concrete containment structures, and cabling (particularly medium-voltage power cables). In-situ replacement of all of these components and structures is problematic - the reactor pressure vessel being of particular significance in this regard. Thus it is anticipated that substantial materials research and development will be required to open the door to this new class of nuclear power reactors.

In 2018, Rosatom began field testing a pressure vessel annealing process in the hopes of extending the longevity of this neutron embrittled and frequently fatigued part, suggesting that it could potentially extend the lifetime of a reactor 30 years. [3]

See also

Related Research Articles

CANDU reactor Canadian heavy water nuclear reactor design

The CANDU is a Canadian pressurized heavy-water reactor design used to generate electric power. The acronym refers to its deuterium oxide moderator and its use of uranium fuel. CANDU reactors were first developed in the late 1950s and 1960s by a partnership between Atomic Energy of Canada Limited (AECL), the Hydro-Electric Power Commission of Ontario, Canadian General Electric, and other companies.

Pressurized water reactor Type of nuclear reactor

A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants. In a PWR, the primary coolant (water) is pumped under high pressure to the reactor core where it is heated by the energy released by the fission of atoms. The heated, high pressure water then flows to a steam generator, where it transfers its thermal energy to lower pressure water of a secondary system where steam is generated. The steam then drives turbines, which spin an electric generator. In contrast to a boiling water reactor (BWR), pressure in the primary coolant loop prevents the water from boiling within the reactor. All light-water reactors use ordinary water as both coolant and neutron moderator. Most use anywhere from two to four vertically mounted steam generators; VVER reactors use horizontal steam generators.

Nuclear power plant Thermal power station where the heat source is a nuclear reactor

A nuclear power plant is a thermal power station in which the heat source is a nuclear reactor. As is typical of thermal power stations, heat is used to generate steam that drives a steam turbine connected to a generator that produces electricity. As of 2022, the International Atomic Energy Agency reported there were 439 nuclear power reactors in operation in 32 countries around the world.

Nuclear marine propulsion Propulsion system for marine vessels utilizing a nuclear powerplant

Nuclear marine propulsion is propulsion of a ship or submarine with heat provided by a nuclear reactor. The power plant heats water to produce steam for a turbine used to turn the ship's propeller through a gearbox or through an electric generator and motor. Nuclear propulsion is used primarily within naval warships such as nuclear submarines and supercarriers. A small number of experimental civil nuclear ships have been built.

Molten salt reactor Type of nuclear reactor cooled by molten material

A molten salt reactor (MSR) is a class of nuclear fission reactor in which the primary nuclear reactor coolant and/or the fuel is a molten salt mixture. Only two MSRs have ever operated, both research reactors in the United States. The 1950's Aircraft Reactor Experiment was primarily motivated by the compact size that the technique offers, while the 1960's Molten-Salt Reactor Experiment aimed to prove the concept of a nuclear power plant which implements a thorium fuel cycle in a breeder reactor. Increased research into Generation IV reactor designs began to renew interest in the technology, with multiple nations having projects and, as of September 2021, China is on the verge of starting its TMSR-LF1 thorium MSR.

Rosatom Russian state-owned nuclear technologies company

Rosatom, also known as Rosatom State Nuclear Energy Corporation, the State Atomic Energy Corporation Rosatom or Rosatom State Corporation, is a Russian state corporation headquartered in Moscow that specializes in nuclear energy, nuclear non-energy goods and high-tech products. Established in 2007, the organization comprises more than 350 enterprises, including scientific research organizations, the nuclear weapons complex, and the world's only nuclear icebreaker fleet.

Paks Nuclear Power Plant Nuclear power plant in Hungary

The Paks Nuclear Power Plant, located 5 kilometres (3.1 mi) from the small town of Paks, central Hungary, is the first and only operating nuclear power station in Hungary. In 2019, its four reactors produced more than 50% of Hungary's electricity production.

Shippingport Atomic Power Station

The Shippingport Atomic Power Station was the world's first full-scale atomic electric power plant devoted exclusively to peacetime uses. It was located near the present-day Beaver Valley Nuclear Generating Station on the Ohio River in Beaver County, Pennsylvania, United States, about 25 miles (40 km) from Pittsburgh.

Fort St. Vrain Generating Station Natural gas-fired powerplant

Fort Saint Vrain Generating Station is a natural gas powered electricity generating facility located near the town of Platteville in northern Colorado in the United States. It currently has a capacity of just under 1000MW and is owned and operated by Xcel Energy, the successor to the plant's founder, the Public Service Company of Colorado. It went online in this form in 1996.

Reactor pressure vessel Nuclear power plant component

A reactor pressure vessel (RPV) in a nuclear power plant is the pressure vessel containing the nuclear reactor coolant, core shroud, and the reactor core.

VVER Soviet / Russian nuclear reactor type

The water-water energetic reactor (WWER), or VVER is a series of pressurized water reactor designs originally developed in the Soviet Union, and now Russia, by OKB Gidropress. The idea of such a reactor was proposed at the Kurchatov Institute by Savely Moiseevich Feinberg. VVER were originally developed before the 1970s, and have been continually updated. As a result, the name VVER is associated with a wide variety of reactor designs spanning from generation I reactors to modern generation III+ reactor designs. Power output ranges from 70 to 1300 MWe, with designs of up to 1700 MWe in development. The first prototype VVER-210 was built at the Novovoronezh Nuclear Power Plant.

Generation III reactor Class of nuclear reactors with improved safety over its predecessors

Generation III reactors are a class of nuclear reactors designed to succeed Generation II reactors, incorporating evolutionary improvements in design. These include improved fuel technology, higher thermal efficiency, significantly enhanced safety systems, and standardized designs intended to reduce maintenance and capital costs. They are promoted by the Generation IV International Forum (GIF).

BN-350 reactor Russian fast breeder reactor, operated from 1973 to 1993

The BN-350 is a sodium-cooled, fast reactor located at the Mangyshlak Nuclear Power Plant, located in Aktau, Kazakhstan, on the shore of the Caspian Sea.

Yankee Rowe Nuclear Power Station Decommissioned nuclear power plant in Massachusetts

Yankee Rowe Nuclear Power Station (decommissioned) was a nuclear power plant in Rowe, Massachusetts, that operated from 1960 to 1992. The 185-megawatt electric pressurized-water plant, located on the Deerfield River in the town of Rowe in western Massachusetts, right on the border of Readsboro, Vermont, permanently shut down on February 26, 1992, after more than 31 years of producing electricity for New England electric consumers.

Armenian Nuclear Power Plant Nuclear power plant near Yerevan, Armenia

The Armenian Nuclear Power Plant (ANPP), also known as the Metsamor Nuclear Power Plant, is the only nuclear power plant in the South Caucasus, located 36 kilometers west of Yerevan in Armenia. The ANPP complex consists of two VVER-440 Model V270 nuclear reactors, each capable of generating 407.5 megawatts (MW) of power, for a total of 815 MW. The plant supplied approximately 40 percent of Armenia's electricity in 2015.

Russian floating nuclear power station

Floating nuclear power stations are vessels designed by Rosatom, the Russian state-owned nuclear energy corporation. They are self-contained, low-capacity, floating nuclear power plants. Rosatom plans to mass-produce the stations at shipbuilding facilities and then tow them to ports near locations that require electricity.

Loviisa Nuclear Power Plant Nuclear power plant in Loviisa, Finland

The Loviisa Nuclear Power Plant (NPP) is located close to the Finnish town of Loviisa. It houses two Soviet-designed VVER-440 PWR reactors, with capacities of 507 MW each. It is one of Finland's two operating nuclear power plants, the other being the three-unit Olkiluoto Nuclear Power Plant.

Balakovo Nuclear Power Plant

Balakovo nuclear power station is located in the city of Balakovo, Saratov Oblast, Russia, about 900 kilometres (560 mi) south-east of Moscow. It consists of four operational reactors; a fifth unit is still under construction. Owner and operator of the nuclear power station is Rosenergoatom.

Liquid fluoride thorium reactor Type of nuclear reactor that uses molten material as fuel

The liquid fluoride thorium reactor is a type of molten salt reactor. LFTRs use the thorium fuel cycle with a fluoride-based, molten, liquid salt for fuel. In a typical design, the liquid is pumped between a critical core and an external heat exchanger where the heat is transferred to a nonradioactive secondary salt. The secondary salt then transfers its heat to a steam turbine or closed-cycle gas turbine.

The VVER-TOI or WWER-TOI is a generation III+ nuclear power reactor based on VVER technology developed by Rosatom. The VVER-TOI design is intended to improve the competitiveness of Russian VVER technology in international markets. It would use VVER-1300/510 water pressurized reactors constructed to meet modern nuclear and radiation safety requirements.

References

  1. Alvin M. Weinberg, “On ‘immortal’ nuclear power plants,” Technology in Society 26 (2004) 447-453, Elsevier Ltd.
  2. Sherrell R. Greene, "Centurion Reactors – Achieving Commercial Power Reactors With 100+ Year Operating Lifetimes'", Oak Ridge National Laboratory, published in transactions of Winter 2009 American Nuclear Society National Meeting, November 2009, Washington, D.C.
  3. Rosatom launches annealing technology for VVER-1000 units