Clinicogenomics

Last updated

Clinicogenomics, also referred to as clinical genomics, is the study of clinical outcomes with genomic data. Genomic factors have a causal effect on clinical data. Clinicogenomics uses the entire genome of a patient in order to diagnose diseases or adjust medications exclusively for that patient. Whole genome testing can detect more mutations and structural anomalies than targeted gene testing. [1] [2] Furthermore, targeted gene testing can only test for the diseases for which the doctor screens, whereas testing the whole genome screens for all diseases with known markers at once. [1] [3]

Contents

Uses

Clinicogenomics is currently used in personalized medicine such as pharmacogenomics and oncogenomics. By studying the whole genome, a physician is able to construct medical plans based on an individual patient's genome rather than generic plans for all patients with the same diagnosis. For example, researchers are able to identify the mutations that cause a particular kind of cancer by studying the genomes of many patients with that cancer type, such as in a study of renal tumors that were previously only diagnosed through morphological anomalies. [4] Furthermore, researchers can identify the medications and treatments that work best on particular cancer-causing mutations, which can then be applied to treat future patients. [5]

Clinicogenomics can also be used in preventative medicine by sequencing a patient's genome prior to a diagnosis in order to identify the known mutations related to medical conditions. In the future, patients could be sequenced at birth and periodically throughout our lives to be cautious of potential health risks and prepare for probable future diagnoses. [6] Through preventative care, patients will be able to change their lifestyles and behaviors to reflect their genetic predisposition to certain conditions. [7] For example, if a woman knows she has mutation in the BRCA1 gene, she can be more proactive about mammograms, Pap smears and other preventative care to help increase her odds of survival despite her likelihood of cancer. By detecting cancer earlier or preventing the development of diseases such as diabetes, health care costs for individuals implementing preventative medicine based on genomic data will decrease. [7]

Challenges

Below are a few of the major challenges facing the usage of clinicogenomics by health care providers today. Other challenges also exist, such as the expense of genome sequence analysis and whether or not insurance companies provide coverage for sequencing.

Physician data sharing

One of the difficulties of genome testing is the amount of data from a sequence and the dozens of formats in which that data can come. This data needs to be standardized and added to electronic health records. [8] It also needs to be in a format that can be utilized by both health care providers for comparisons, second opinions and future study [8] as well as by machines used for processing the data for further analysis. [9]

Patient privacy

One of the concerns of utilizing clinicogenomics is the privacy of the patients throughout the process of collecting the DNA, analyzing the genome, and delivering the interpreted data to health care providers. In a study using HIV patients, the researchers encrypted the raw genetic data prior to analysis in order to maintain the anonymity of the patient. Then, a scientist without any previous knowledge of the patient interpreted the encrypted data. A report was produced and given to the physician for further study if applicable. [10]

Related Research Articles

<span class="mw-page-title-main">Genetic testing</span> Medical test

Genetic testing, also known as DNA testing, is used to identify changes in DNA sequence or chromosome structure. Genetic testing can also include measuring the results of genetic changes, such as RNA analysis as an output of gene expression, or through biochemical analysis to measure specific protein output. In a medical setting, genetic testing can be used to diagnose or rule out suspected genetic disorders, predict risks for specific conditions, or gain information that can be used to customize medical treatments based on an individual's genetic makeup. Genetic testing can also be used to determine biological relatives, such as a child's biological parentage through DNA paternity testing, or be used to broadly predict an individual's ancestry. Genetic testing of plants and animals can be used for similar reasons as in humans, to gain information used for selective breeding, or for efforts to boost genetic diversity in endangered populations.

<span class="mw-page-title-main">Marco Marra</span> Canadian geneticist

Marco A. Marra is a Distinguished Scientist and Director of Canada's Michael Smith Genome Sciences Centre at the BC Cancer Research Centre and Professor of Medical Genetics at the University of British Columbia (UBC). He also serves as UBC Canada Research Chair in Genome Science for the Canadian Institutes of Health Research and is an inductee in the Canadian Medical Hall of Fame. Marra has been instrumental in bringing genome science to Canada by demonstrating the pivotal role that genomics can play in human health and disease research.

<span class="mw-page-title-main">Pharmacogenomics</span> Study of the role of the genome in drug response

Pharmacogenomics is the study of the role of the genome in drug response. Its name reflects its combining of pharmacology and genomics. Pharmacogenomics analyzes how the genetic makeup of a patient affects their response to drugs. It deals with the influence of acquired and inherited genetic variation on drug response, by correlating DNA mutations with pharmacokinetic, pharmacodynamic, and/or immunogenic endpoints.

deCODE genetics is a biopharmaceutical company based in Reykjavík, Iceland. The company was founded in 1996 by Kári Stefánsson with the aim of using population genetics studies to identify variations in the human genome associated with common diseases, and to apply these discoveries "to develop novel methods to identify, treat and prevent diseases."

<span class="mw-page-title-main">Personalized medicine</span> Medical model that tailors medical practices to the individual patient

Personalized medicine, also referred to as precision medicine, is a medical model that separates people into different groups—with medical decisions, practices, interventions and/or products being tailored to the individual patient based on their predicted response or risk of disease. The terms personalized medicine, precision medicine, stratified medicine and P4 medicine are used interchangeably to describe this concept though some authors and organisations use these expressions separately to indicate particular nuances.

Predictive medicine is a field of medicine that entails predicting the probability of disease and instituting preventive measures in order to either prevent the disease altogether or significantly decrease its impact upon the patient.

Public health genomics is the use of genomics information to benefit public health. This is visualized as more effective preventive care and disease treatments with better specificity, tailored to the genetic makeup of each patient. According to the Centers for Disease Control and Prevention (U.S.), Public Health genomics is an emerging field of study that assesses the impact of genes and their interaction with behavior, diet and the environment on the population's health.

Personal genomics or consumer genetics is the branch of genomics concerned with the sequencing, analysis and interpretation of the genome of an individual. The genotyping stage employs different techniques, including single-nucleotide polymorphism (SNP) analysis chips, or partial or full genome sequencing. Once the genotypes are known, the individual's variations can be compared with the published literature to determine likelihood of trait expression, ancestry inference and disease risk.

<span class="mw-page-title-main">Whole genome sequencing</span> Determining nearly the entirety of the DNA sequence of an organisms genome at a single time

Whole genome sequencing (WGS), also known as full genome sequencing, complete genome sequencing, or entire genome sequencing, is the process of determining the entirety, or nearly the entirety, of the DNA sequence of an organism's genome at a single time. This entails sequencing all of an organism's chromosomal DNA as well as DNA contained in the mitochondria and, for plants, in the chloroplast.

The exome is composed of all of the exons within the genome, the sequences which, when transcribed, remain within the mature RNA after introns are removed by RNA splicing. This includes untranslated regions of messenger RNA (mRNA), and coding regions. Exome sequencing has proven to be an efficient method of determining the genetic basis of more than two dozen Mendelian or single gene disorders.

Dr. Paul R. Billings is a distinguished American doctor, lecturer, researcher, professor, and consultant on genetic information. His research interests include the impact of genomic data on society, the integration of genomics with diagnostics in health and medical care, and individualized genomic medicine. He is the author of over 250 publications and has appeared on talk shows such as The Oprah Winfrey Show and 60 Minutes. He is currently the CEO and Director of Biological Dynamics.

Genomic counseling is the process by which a person gets informed about his or her genome often in the setting of elective genetic and genomic testing. In contrast to genetic counseling, which focuses on Mendelian diseases and typically involves person-to-person communication with a genetic counselor or other medical genetics expert, genomic counseling is not limited to currently clinically relevant information. It is often based on genomic information that is of interest for the informed person, such as increased risk for common complex disease that has actionable components, genetically determined non-disease related traits, or recreational forms of information and genetic genealogy data. An individual's response to certain medications/drugs based on their pharmacogenomic profile may be provided.

Cancer genome sequencing is the whole genome sequencing of a single, homogeneous or heterogeneous group of cancer cells. It is a biochemical laboratory method for the characterization and identification of the DNA or RNA sequences of cancer cell(s).

<span class="mw-page-title-main">Exome sequencing</span> Sequencing of all the exons of a genome

Exome sequencing, also known as whole exome sequencing (WES), is a genomic technique for sequencing all of the protein-coding regions of genes in a genome. It consists of two steps: the first step is to select only the subset of DNA that encodes proteins. These regions are known as exons—humans have about 180,000 exons, constituting about 1% of the human genome, or approximately 30 million base pairs. The second step is to sequence the exonic DNA using any high-throughput DNA sequencing technology.

A variant of uncertainsignificance (VUS) is a genetic variant that has been identified through genetic testing but whose significance to the function or health of an organism is not known. Two related terms are "gene of uncertain significance" (GUS), which refers to a gene that has been identified through genome sequencing but whose connection to a human disease has not been established, and "insignificant mutation", referring to a gene variant that has no impact on the health or function of an organism. The term "variant' is favored in clinical practice over "mutation" because it can be used to describe an allele more precisely. When the variant has no impact on health, it is called a "benign variant". When it is associated with a disease, it is called a "pathogenic variant". A "pharmacogenomic variant" has an effect only when an individual takes a particular drug and therefore is neither benign nor pathogenic.

Elective genetic and genomic testing are DNA tests performed for an individual who does not have an indication for testing. An elective genetic test analyzes selected sites in the human genome while an elective genomic test analyzes the entire human genome. Some elective genetic and genomic tests require a physician to order the test to ensure that individuals understand the risks and benefits of testing as well as the results. Other DNA-based tests, such as a genealogical DNA test do not require a physician's order. Elective testing is generally not paid for by health insurance companies. With the advent of personalized medicine, also called precision medicine, an increasing number of individuals are undertaking elective genetic and genomic testing.

Personalized onco-genomics (POG) is the field of oncology and genomics that is focused on using whole genome analysis to make personalized clinical treatment decisions. The program was devised at British Columbia's BC Cancer Agency and is currently being led by Marco Marra and Janessa Laskin. Genome instability has been identified as one of the underlying hallmarks of cancer. The genetic diversity of cancer cells promotes multiple other cancer hallmark functions that help them survive in their microenvironment and eventually metastasise. The pronounced genomic heterogeneity of tumours has led researchers to develop an approach that assesses each individual's cancer to identify targeted therapies that can halt cancer growth. Identification of these "drivers" and corresponding medications used to possibly halt these pathways are important in cancer treatment.

Personalized genomics is the human genetics-derived study of analyzing and interpreting individualized genetic information by genome sequencing to identify genetic variations compared to the library of known sequences. International genetics communities have spared no effort from the past and have gradually cooperated to prosecute research projects to determine DNA sequences of the human genome using DNA sequencing techniques. The methods that are the most commonly used are whole exome sequencing and whole genome sequencing. Both approaches are used to identify genetic variations. Genome sequencing became more cost-effective over time, and made it applicable in the medical field, allowing scientists to understand which genes are attributed to specific diseases.

Precision diagnostics is a branch of precision medicine that involves precisely managing a patient's healthcare model and diagnosing specific diseases based on customized omics data analytics.

Jenny Carmeron Taylor is a British geneticist who is Professor of Genomic Medicine at the University of Oxford. Taylor is the Director of the Oxford Biomedical Research Centre Genetics Theme. Her research considers whole genome sequencing and ways to integrate genetic research into the National Health Service.

References

  1. 1 2 Veltman, Joris A., and James R. Lupski. “From Genes to Genomes in the Clinic.” Genome Medicine 7.1 (2015): 78.
  2. Robinson, Dan et al. “Integrative Clinical Genomics of Advanced Prostate Cancer.” Cell 161.5 (2015): 1215–1228.
  3. Westblade, Lars F. et al. “Role of Clinicogenomics in Infectious Disease Diagnostics and Public Health Microbiology.” Journal of Clinical Microbiology 54.7 (2016): 1686–1693.
  4. Hagenkord, Jill M. et al. “Clinical Genomics of Renal Epithelial Tumors.” Cancer Genetics 204.6 (2011): 285–297.
  5. Uzilov, Andrew V. et al. “Development and Clinical Application of an Integrative Genomic Approach to Personalized Cancer Therapy.” Genome Medicine 8.1 (2016): 62.
  6. Berg, Jonathan S., Muin J. Khoury, and James P. Evans. “Deploying Whole Genome Sequencing in Clinical Practice and Public Health: Meeting the Challenge One Bin at a Time.” Genetics in Medicine 13.6 (2011): 499–504.
  7. 1 2 Potamias, George, Dimitris Kafetzopoulos, and Manolis Tsiknakis. "Integrated clinico-genomics environment: Design and operational specification." Journal for Quality of Life Research 2.1 (2004): 145-150.
  8. 1 2 Warner, Jeremy L., Sandeep K. Jain, and Mia A. Levy. “Integrating Cancer Genomic Data into Electronic Health Records.” Genome Medicine 8.1 (2016): 113.
  9. Shabo (Shvo), Amnon. “Health Record Banks: Integrating Clinical and Genomic Data into Patient-Centric Longitudinal and Cross-Institutional Health Records.” Personalized Medicine 4.4 (2007): 453–455.
  10. McLaren, Paul J. et al. “Privacy-Preserving Genomic Testing in the Clinic: A Model Using HIV Treatment.” Genetics in Medicine 18.8 (2016): 814–822.