Cobordism hypothesis

Last updated

In mathematics, the cobordism hypothesis, due to John C. Baez and James Dolan, [1] concerns the classification of extended topological quantum field theories (TQFTs). In 2008, Jacob Lurie outlined a proof of the cobordism hypothesis, though the details of his approach have yet to appear in the literature as of 2022. [2] [3] [4] In 2021, Daniel Grady and Dmitri Pavlov claimed a complete proof of the cobordism hypothesis, as well as a generalization to bordisms with arbitrary geometric structures. [4]

Contents

Formulation

For a symmetric monoidal -category which is fully dualizable and every -morphism of which is adjointable, for , there is a bijection between the -valued symmetric monoidal functors of the cobordism category and the objects of .

Motivation

Symmetric monoidal functors from the cobordism category correspond to topological quantum field theories. The cobordism hypothesis for topological quantum field theories is the analogue of the Eilenberg–Steenrod axioms for homology theories. The Eilenberg–Steenrod axioms state that a homology theory is uniquely determined by its value for the point, so analogously what the cobordism hypothesis states is that a topological quantum field theory is uniquely determined by its value for the point. In other words, the bijection between -valued symmetric monoidal functors and the objects of is uniquely defined by its value for the point.

See also

Related Research Articles

In mathematics and computer science, currying is the technique of converting a function that takes multiple arguments into a sequence of functions that each takes a single argument. For example, currying a function that takes three arguments creates three functions:

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

In mathematics, a monoidal category is a category equipped with a bifunctor

In gauge theory and mathematical physics, a topological quantum field theory is a quantum field theory which computes topological invariants.

In algebraic topology, a branch of mathematics, a spectrum is an object representing a generalized cohomology theory. This means that, given a cohomology theory

,

In mathematics, especially in category theory, a closed monoidal category is a category that is both a monoidal category and a closed category in such a way that the structures are compatible.

In mathematics, a commutativity constraint on a monoidal category is a choice of isomorphism for each pair of objects A and B which form a "natural family." In particular, to have a commutativity constraint, one must have for all pairs of objects .

In mathematics, especially in the fields of representation theory and module theory, a Frobenius algebra is a finite-dimensional unital associative algebra with a special kind of bilinear form which gives the algebras particularly nice duality theories. Frobenius algebras began to be studied in the 1930s by Richard Brauer and Cecil Nesbitt and were named after Georg Frobenius. Tadashi Nakayama discovered the beginnings of a rich duality theory, . Jean Dieudonné used this to characterize Frobenius algebras. Frobenius algebras were generalized to quasi-Frobenius rings, those Noetherian rings whose right regular representation is injective. In recent times, interest has been renewed in Frobenius algebras due to connections to topological quantum field theory.

This is a glossary of properties and concepts in category theory in mathematics.

In mathematics, Tannaka–Krein duality theory concerns the interaction of a compact topological group and its category of linear representations. It is a natural extension of Pontryagin duality, between compact and discrete commutative topological groups, to groups that are compact but noncommutative. The theory is named after Tadao Tannaka and Mark Grigorievich Krein. In contrast to the case of commutative groups considered by Lev Pontryagin, the notion dual to a noncommutative compact group is not a group, but a category of representations Π(G) with some additional structure, formed by the finite-dimensional representations of G.

In mathematics, specifically in algebraic topology, the Eilenberg–Steenrod axioms are properties that homology theories of topological spaces have in common. The quintessential example of a homology theory satisfying the axioms is singular homology, developed by Samuel Eilenberg and Norman Steenrod.

In mathematics, a *-autonomous category C is a symmetric monoidal closed category equipped with a dualizing object . The concept is also referred to as Grothendieck—Verdier category in view of its relation to the notion of Verdier duality.

In category theory, monoidal functors are functors between monoidal categories which preserve the monoidal structure. More specifically, a monoidal functor between two monoidal categories consists of a functor between the categories, along with two coherence maps—a natural transformation and a morphism that preserve monoidal multiplication and unit, respectively. Mathematicians require these coherence maps to satisfy additional properties depending on how strictly they want to preserve the monoidal structure; each of these properties gives rise to a slightly different definition of monoidal functors

In category theory, a branch of mathematics, a PROP is a symmetric strict monoidal category whose objects are the natural numbers n identified with the finite sets and whose tensor product is given on objects by the addition on numbers. Because of “symmetric”, for each n, the symmetric group on n letters is given as a subgroup of the automorphism group of n. The name PROP is an abbreviation of "PROduct and Permutation category".

In category theory, a branch of mathematics, dagger compact categories first appeared in 1989 in the work of Sergio Doplicher and John E. Roberts on the reconstruction of compact topological groups from their category of finite-dimensional continuous unitary representations. They also appeared in the work of John Baez and James Dolan as an instance of semistrict k-tuply monoidal n-categories, which describe general topological quantum field theories, for n = 1 and k = 3. They are a fundamental structure in Samson Abramsky and Bob Coecke's categorical quantum mechanics.

In mathematics, a highly structured ring spectrum or -ring is an object in homotopy theory encoding a refinement of a multiplicative structure on a cohomology theory. A commutative version of an -ring is called an -ring. While originally motivated by questions of geometric topology and bundle theory, they are today most often used in stable homotopy theory.

In category theory, a branch of mathematics, an ∞-groupoid is an abstract homotopical model for topological spaces. One model uses Kan complexes which are fibrant objects in the category of simplicial sets. It is an ∞-category generalization of a groupoid, a category in which every morphism is an isomorphism.

In algebraic K-theory, the K-theory of a categoryC is a sequence of abelian groups Ki(C) associated to it. If C is an abelian category, there is no need for extra data, but in general it only makes sense to speak of K-theory after specifying on C a structure of an exact category, or of a Waldhausen category, or of a dg-category, or possibly some other variants. Thus, there are several constructions of those groups, corresponding to various kinds of structures put on C. Traditionally, the K-theory of C is defined to be the result of a suitable construction, but in some contexts there are more conceptual definitions. For instance, the K-theory is a 'universal additive invariant' of dg-categories and small stable ∞-categories.

In mathematics, compact objects, also referred to as finitely presented objects, or objects of finite presentation, are objects in a category satisfying a certain finiteness condition.

In mathematics, specifically in category theory and algebraic topology, the Baez–Dolan stabilization hypothesis, proposed in, states that suspension of a weak n-category has no more essential effect after n + 2 times. Precisely, it states that the suspension functor is an equivalence for .

References

  1. Baez, John C.; Dolan, James (1995). "Higher‐dimensional algebra and topological quantum field theory". Journal of Mathematical Physics. 36 (11): 6073–6105. arXiv: q-alg/9503002 . Bibcode:1995JMP....36.6073B. doi:10.1063/1.531236. ISSN   0022-2488. S2CID   14908618.
  2. Hisham Sati; Urs Schreiber (2011). Mathematical Foundations of Quantum Field Theory and Perturbative String Theory. American Mathematical Soc. p. 18. ISBN   978-0-8218-5195-1.
  3. Ayala, David; Francis, John (2017-05-05). "The cobordism hypothesis". arXiv: 1705.02240 [math.AT].
  4. 1 2 Grady, Daniel; Pavlov, Dmitri (2021-11-01). "The geometric cobordism hypothesis". arXiv: 2111.01095 [math.AT].

Further reading