Colocalization

Last updated

In fluorescence microscopy, colocalization refers to observation of the spatial overlap between two (or more) different fluorescent labels, each having a separate emission wavelength, to see if the different "targets" are located in the same area of the cell or very near to one another. The definition can be split into two different phenomena, co-occurrence, which refers to the presence of two (possibly unrelated) fluorophores in the same pixel, and correlation, a much more significant statistical relationship between the fluorophores indicative of a biological interaction. [1] This technique is important to many cell biological and physiological studies during the demonstration of a relationship between pairs of bio-molecules.

Contents

History

The ability to demonstrate a correlation between a pair of bio-molecules was greatly enhanced by Erik Manders of the University of Amsterdam who introduced Pearson's correlation coefficient (PCC) to microscopists, [2] along with other coefficients of which the "overlap coefficients" M1 and M2 have proved to be the most popular and useful. [3] [4] The purpose of using coefficients is to characterize the degree of overlap between images, usually two channels in a multidimensional microscopy image recorded at different emission wavelengths. A popular approach was introduced by Sylvain Costes, who utilized Pearson's correlation coefficient as a tool for setting the thresholds required by M1 and M2 in an objective fashion. [5] Costes approach makes the assumption that only positive correlations are of interest, and does not provide a useful measurement of PCC.

Although the use of coefficients can significantly improve the reliability of colocalization detection, it depends on the number of factors, including the conditions of how samples with fluorescence were prepared and how images with colocalization were acquired and processed. Studies should be conducted with great caution, and after careful background reading. Currently the field is dogged by confusion and a standardized approach is yet to be firmly established. [6] Attempts to rectify this include re-examination and revision of some of the coefficients, [7] [8] application of a factor to correct for noise, [1] "Replicate based noise corrected correlations for accurate measurements of colocalization". [9] and the proposal of further protocols, [10] which were thoroughly reviewed by Bolte and Cordelieres (2006). [6] In addition, due to the tendency of fluorescence images to contain a certain amount of out-of-focus signal, and poisson shot and other noise, they usually require pre-processing prior to quantification. [11] [12] Careful image restoration by deconvolution removes noise and increases contrast in images, improving the quality of colocalization analysis results. Up to now, most frequently used methods to quantify colocalization calculate the statistical correlation of pixel intensities in two distinct microscopy channels. More recent studies have shown that this can lead to high correlation coefficients even for targets that are known to reside in different cellular compartments. [13] A more robust quantification of colocalization can be achieved by combining digital object recognition, the calculation of the area overlap and combination with a pixel-intensity correlation value. This led to the concept of an object-corrected Pearson's correlation coefficient. [13]

Examples of use

Some impermeable fluorescent zinc dyes can detectably label the cytosol and nuclei of apoptizing and necrotizing cells among each of four different tissue types examined. Namely: the cerebral cortex, the hippocampus, the cerebellum, and it was also demonstrated that colocalized detection of zinc increase and the well accepted cell death indicator propidium iodide also occurred in kidney cells. Using the principles of fluorescent colocalization. coincident detection of zinc accumulation and propidium iodide (a traditional cell death indicator) uptake in multiple cell types was demonstrated. [14] Various examples of quantification of colocalization in the field of neuroscience can be found in a review. [15] Detailed protocols on the quantification of colocalization can be found in a book chapter. [16]

Single-molecule resolution

Colocalization is used in real-time single-molecule fluorescence microscopy to detect interactions between fluorescently labeled molecular species. In this case, one species (e.g. a DNA molecule) is typically immobilized on the imaging surface, and the other species (e.g. a DNA-binding protein) is supplied to the solution. The two species are labeled with dyes of spectrally resolved (>50 nm) colors, e.g. cyanine-3 and cyanine-5. Fluorescence excitation is typically carried out in total internal reflection mode which increases the signal-to-noise ratio for the molecules at the surface with respect to the molecules in bulk solution. The molecules are detected as spots appearing on the surface in real-time, and their locations are found to within 10-20 nm by fitting of point-spread functions. Since typical sizes of biomolecules are on the order of 10 nm, this precision is usually sufficient for calling of molecular interactions [17]

Interpretation of results

For the purpose of better interpretation of the results of qualitative and quantitative colocalization studies, it was suggested to use a set of five linguistic variables tied to the values of colocalization coefficients, such as very weak, weak, moderate, strong, and very strong, for describing them. The approach is based on the use of the fuzzy system model and computer simulation. When new coefficients are introduced, their values can be fitted into the set. [18]

Benchmark images

The degree of colocalization in fluorescence microscopy images can be validated using the Colocalization Benchmark Source, a free collection of downloadable image sets with pre-defined values of colocalization.

Software implementations

open source

closed source

Related Research Articles

<span class="mw-page-title-main">Flow cytometry</span> Lab technique in biology and chemistry

Flow cytometry (FC) is a technique used to detect and measure physical and chemical characteristics of a population of cells or particles.

<span class="mw-page-title-main">Fluorophore</span> Agents that emit light after excitation by light

A fluorophore is a fluorescent chemical compound that can re-emit light upon light excitation. Fluorophores typically contain several combined aromatic groups, or planar or cyclic molecules with several π bonds.

<span class="mw-page-title-main">Immunofluorescence</span> Technique used for light microscopy

Immunofluorescence is a technique used for light microscopy with a fluorescence microscope and is used primarily on biological samples. This technique uses the specificity of antibodies to their antigen to target fluorescent dyes to specific biomolecule targets within a cell, and therefore allows visualization of the distribution of the target molecule through the sample. The specific region an antibody recognizes on an antigen is called an epitope. There have been efforts in epitope mapping since many antibodies can bind the same epitope and levels of binding between antibodies that recognize the same epitope can vary. Additionally, the binding of the fluorophore to the antibody itself cannot interfere with the immunological specificity of the antibody or the binding capacity of its antigen. Immunofluorescence is a widely used example of immunostaining and is a specific example of immunohistochemistry. This technique primarily makes use of fluorophores to visualise the location of the antibodies.

<span class="mw-page-title-main">Förster resonance energy transfer</span> Photochemical energy transfer mechanism

Förster resonance energy transfer (FRET), fluorescence resonance energy transfer, resonance energy transfer (RET) or electronic energy transfer (EET) is a mechanism describing energy transfer between two light-sensitive molecules (chromophores). A donor chromophore, initially in its electronic excited state, may transfer energy to an acceptor chromophore through nonradiative dipole–dipole coupling. The efficiency of this energy transfer is inversely proportional to the sixth power of the distance between donor and acceptor, making FRET extremely sensitive to small changes in distance.

A total internal reflection fluorescence microscope (TIRFM) is a type of microscope with which a thin region of a specimen, usually less than 200 nanometers can be observed.

<span class="mw-page-title-main">Fluorescence microscope</span> Optical microscope that uses fluorescence and phosphorescence

A fluorescence microscope is an optical microscope that uses fluorescence instead of, or in addition to, scattering, reflection, and attenuation or absorption, to study the properties of organic or inorganic substances. "Fluorescence microscope" refers to any microscope that uses fluorescence to generate an image, whether it is a simple set up like an epifluorescence microscope or a more complicated design such as a confocal microscope, which uses optical sectioning to get better resolution of the fluorescence image.

Fluorescence correlation spectroscopy (FCS) is a statistical analysis, via time correlation, of stationary fluctuations of the fluorescence intensity. Its theoretical underpinning originated from L. Onsager's regression hypothesis. The analysis provides kinetic parameters of the physical processes underlying the fluctuations. One of the interesting applications of this is an analysis of the concentration fluctuations of fluorescent particles (molecules) in solution. In this application, the fluorescence emitted from a very tiny space in solution containing a small number of fluorescent particles (molecules) is observed. The fluorescence intensity is fluctuating due to Brownian motion of the particles. In other words, the number of the particles in the sub-space defined by the optical system is randomly changing around the average number. The analysis gives the average number of fluorescent particles and average diffusion time, when the particle is passing through the space. Eventually, both the concentration and size of the particle (molecule) are determined. Both parameters are important in biochemical research, biophysics, and chemistry.

<span class="mw-page-title-main">Single-molecule experiment</span>

A single-molecule experiment is an experiment that investigates the properties of individual molecules. Single-molecule studies may be contrasted with measurements on an ensemble or bulk collection of molecules, where the individual behavior of molecules cannot be distinguished, and only average characteristics can be measured. Since many measurement techniques in biology, chemistry, and physics are not sensitive enough to observe single molecules, single-molecule fluorescence techniques caused a lot of excitement, since these supplied many new details on the measured processes that were not accessible in the past. Indeed, since the 1990s, many techniques for probing individual molecules have been developed.

<span class="mw-page-title-main">STED microscopy</span>

Stimulated emission depletion (STED) microscopy is one of the techniques that make up super-resolution microscopy. It creates super-resolution images by the selective deactivation of fluorophores, minimizing the area of illumination at the focal point, and thus enhancing the achievable resolution for a given system. It was developed by Stefan W. Hell and Jan Wichmann in 1994, and was first experimentally demonstrated by Hell and Thomas Klar in 1999. Hell was awarded the Nobel Prize in Chemistry in 2014 for its development. In 1986, V.A. Okhonin had patented the STED idea. This patent was unknown to Hell and Wichmann in 1994.

High-content screening (HCS), also known as high-content analysis (HCA) or cellomics, is a method that is used in biological research and drug discovery to identify substances such as small molecules, peptides, or RNAi that alter the phenotype of a cell in a desired manner. Hence high content screening is a type of phenotypic screen conducted in cells involving the analysis of whole cells or components of cells with simultaneous readout of several parameters. HCS is related to high-throughput screening (HTS), in which thousands of compounds are tested in parallel for their activity in one or more biological assays, but involves assays of more complex cellular phenotypes as outputs. Phenotypic changes may include increases or decreases in the production of cellular products such as proteins and/or changes in the morphology of the cell. Hence HCA typically involves automated microscopy and image analysis. Unlike high-content analysis, high-content screening implies a level of throughput which is why the term "screening" differentiates HCS from HCA, which may be high in content but low in throughput.

Chemical imaging is the analytical capability to create a visual image of components distribution from simultaneous measurement of spectra and spatial, time information. Hyperspectral imaging measures contiguous spectral bands, as opposed to multispectral imaging which measures spaced spectral bands.

Fluorescence Loss in Photobleaching (FLIP) is a fluorescence microscopy technique used to examine movement of molecules inside cells and membranes. A cell membrane is typically labeled with a fluorescent dye to allow for observation. A specific area of this labeled section is then bleached several times using the beam of a confocal laser scanning microscope. After each imaging scan, bleaching occurs again. This occurs several times, to ensure that all accessible fluorophores are bleached since unbleached fluorophores are exchanged for bleached fluorophores, causing movement through the cell membrane. The amount of fluorescence from that region is then measured over a period of time to determine the results of the photobleaching on the cell as a whole.

<span class="mw-page-title-main">Vertico spatially modulated illumination</span>

Vertico spatially modulated illumination (Vertico-SMI) is the fastest light microscope for the 3D analysis of complete cells in the nanometer range. It is based on two technologies developed in 1996, SMI and SPDM. The effective optical resolution of this optical nanoscope has reached the vicinity of 5 nm in 2D and 40 nm in 3D, greatly surpassing the λ/2 resolution limit applying to standard microscopy using transmission or reflection of natural light according to the Abbe resolution limit That limit had been determined by Ernst Abbe in 1873 and governs the achievable resolution limit of microscopes using conventional techniques.

<span class="mw-page-title-main">Fluorescence in the life sciences</span> Scientific investigative technique

Fluorescence is used in the life sciences generally as a non-destructive way of tracking or analysing biological molecules. Some proteins or small molecules in cells are naturally fluorescent, which is called intrinsic fluorescence or autofluorescence. Alternatively, specific or general proteins, nucleic acids, lipids or small molecules can be "labelled" with an extrinsic fluorophore, a fluorescent dye which can be a small molecule, protein or quantum dot. Several techniques exist to exploit additional properties of fluorophores, such as fluorescence resonance energy transfer, where the energy is passed non-radiatively to a particular neighbouring dye, allowing proximity or protein activation to be detected; another is the change in properties, such as intensity, of certain dyes depending on their environment allowing their use in structural studies.

Super-resolution microscopy is a series of techniques in optical microscopy that allow such images to have resolutions higher than those imposed by the diffraction limit, which is due to the diffraction of light. Super-resolution imaging techniques rely on the near-field or on the far-field. Among techniques that rely on the latter are those that improve the resolution only modestly beyond the diffraction-limit, such as confocal microscopy with closed pinhole or aided by computational methods such as deconvolution or detector-based pixel reassignment, the 4Pi microscope, and structured-illumination microscopy technologies such as SIM and SMI.

Photo-activated localization microscopy and stochastic optical reconstruction microscopy (STORM) are widefield fluorescence microscopy imaging methods that allow obtaining images with a resolution beyond the diffraction limit. The methods were proposed in 2006 in the wake of a general emergence of optical super-resolution microscopy methods, and were featured as Methods of the Year for 2008 by the Nature Methods journal. The development of PALM as a targeted biophysical imaging method was largely prompted by the discovery of new species and the engineering of mutants of fluorescent proteins displaying a controllable photochromism, such as photo-activatible GFP. However, the concomitant development of STORM, sharing the same fundamental principle, originally made use of paired cyanine dyes. One molecule of the pair, when excited near its absorption maximum, serves to reactivate the other molecule to the fluorescent state.

The Colocalization Benchmark Source (CBS) is a free collection of downloadable images to test and validate the degree of colocalization of markers in any fluorescence microscopy studies. Colocalization is a visual phenomenon when two molecules of interest are associated with the same structures in the cells and potentially share common functional characteristics.

Calcium imaging is a microscopy technique to optically measure the calcium (Ca2+) status of an isolated cell, tissue or medium. Calcium imaging takes advantage of calcium indicators, fluorescent molecules that respond to the binding of Ca2+ ions by fluorescence properties. Two main classes of calcium indicators exist: chemical indicators and genetically encoded calcium indicators (GECI). This technique has allowed studies of calcium signalling in a wide variety of cell types. In neurons, electrical activity is always accompanied by an influx of Ca2+ ions. Thus, calcium imaging can be used to monitor the electrical activity in hundreds of neurons in cell culture or in living animals, which has made it possible to dissect the function of neuronal circuits.

Super-resolution dipole orientation mapping (SDOM) is a form of fluorescence polarization microscopy (FPM) that achieved super resolution through polarization demodulation. It was first described by Karl Zhanghao and others in 2016. Fluorescence polarization (FP) is related to the dipole orientation of chromophores, making fluorescence polarization microscopy possible to reveal structures and functions of tagged cellular organelles and biological macromolecules. In addition to fluorescence intensity, wavelength, and lifetime, the fourth dimension of fluorescence—polarization—can also provide intensity modulation without the restriction to specific fluorophores; its investigation in super-resolution microscopy is still in its infancy.

<span class="mw-page-title-main">Fluorescence imaging</span> Type of non-invasive imaging technique

Fluorescence imaging is a type of non-invasive imaging technique that can help visualize biological processes taking place in a living organism. Images can be produced from a variety of methods including: microscopy, imaging probes, and spectroscopy.

References

  1. 1 2 Adler et al. (2008)
  2. Manders et al (1992). "Dynamics of three-dimensional replication patterns during the S-phase, analysed by double labelling of DNA and confocal microscopy."
  3. Manders; et al. (1993). "Measurement of co-localisation of objects in dual-colour confocal images". Journal of Microscopy. 169 (3): 375–382. doi:10.1111/j.1365-2818.1993.tb03313.x. PMID   33930978. S2CID   95098323.
  4. Zinchuk V et al (2007). "Quantitative colocalization analysis of multicolor confocal immunofluorescence microscopy images: pushing pixels to explore biological phenomena". Acta Histochem Cytochem 40:101-111.
  5. Costes et al (2004) "Automatic and Quantitative Measurement of Protein-Protein Colocalization in Live Cells."
  6. 1 2 BOLTE and CORDELIÈRES (2006) "A guided tour into subcellular colocalization analysis in light microscopy."
  7. Adler and Parmryd (2010)"Quantifying colocalization by correlation: The Pearson correlation coefficient is superior to the Mander's overlap coefficient."
  8. Krauß et al (2015). "Colocalization of fluorescence and Raman microscopic images for the identification of subcellular compartments: a validation study." Analyst, volume 140, issue 7, pages 2360-2368.
  9. Adler, J.; Pagakis, S. N.; Parmryd, I. (1 April 2008). "Replicate-based noise corrected correlation for accurate measurements of colocalization". Journal of Microscopy. 230 (1): 121–133. doi:10.1111/j.1365-2818.2008.01967.x. PMID   18387047. S2CID   12758752.
  10. Curr Protoc Cell Biol "Quantitative colocalization analysis of confocal fluorescence microscopy images." Archived 2009-11-28 at the Wayback Machine
  11. Pawley JB (2006). Handbook of Biological Confocal Microscopy
  12. Zinchuk V et al (2011). "Quantifying spatial correlations of fluorescent markers using enhanced background reduction with protein proximity index and correlation coefficient estimations". Nat Protoc 6:1554-1567.
  13. 1 2 Moser, Bernhard; Hochreiter, Bernhard; Herbst, Ruth; Schmid, Johannes A. (2016-07-01). "Fluorescence colocalization microscopy analysis can be improved by combining object-recognition with pixel-intensity-correlation". Biotechnology Journal. 12 (1): 1600332. doi:10.1002/biot.201600332. ISSN   1860-7314. PMC   5244660 . PMID   27420480.
  14. Stork, Christian J.; Li, Yang V. (15 September 2006). "Measuring cell viability with membrane impermeable zinc fluorescent indicator". Journal of Neuroscience Methods. 155 (2): 180–186. doi:10.1016/j.jneumeth.2005.12.029. PMID   16466804. S2CID   16900662.
  15. Zinchuk V & Grossenbacher-Zinchuk O (2009). "Recent advances in quantitative colocalization analysis: Focus on neuroscience". Prog Histochem Cytochem 44:125-172
  16. "Adler J & Parmryd I (2013) Methods Mol Biol 931, 97-109". Colocalization analysis in fluorescence microscopy. Retrieved 2016-04-19.
  17. Gelles, Friedman L. (17 February 2012). "Mechanism of Transcription Initiation at an Activator-Dependent Promoter Defined by Single-Molecule Observation". Cell. 148 (4): 635–637. doi:10.1016/j.cell.2012.01.018. PMC   3479156 . PMID   22341441.
  18. Zinchuk, V; et al. (2013). "Bridging the gap between qualitative and quantitative colocalization results in fluorescence microscopy studies". Sci Rep. 3: 1365. doi:10.1038/srep01365. PMC   3586700 . PMID   23455567.
  19. Rewire Neuro's Pipsqueak Pro