Commercial classification of chemicals

Last updated
Commercial classification of chemicals. Fine Chemicals, Commodities and Specialties.jpg
Commercial classification of chemicals.

Following the commercial classification of chemicals, chemicals produced by chemical industry can be divided essentially into three broad categories:

Contents

Kline matrix

Kline matrix. Kline matrix.svg
Kline matrix.

Kline matrix was presented for the first time in 1970 by Charles Howard Kline. [5] It is a more detailed classification of the previous one, that distinguished chemical commodities into two subclasses, called respectively "true commodities" and "pseudocommodities". In general the classification of chemical industry products by the Kline matrix is related to the chemicals' worldwide production (measured for example in tons/year) and to their value added. [6]

Following this classification, the chemical industry products are divided into four categories:

Basic chemicals

The concept of basic chemicals is very close to chemical commodities. In fact basic chemicals are chemical substances used as a starting material for the production of a wide variety of other chemicals; for this reason they are in general commodities, because they are highly demanded. Some examples of basic chemicals are: ethylene, benzene, chlorine and sulfuric acid. [7]

High production volume chemical

High Production Volume (HPV) Chemicals is another commercial classification of chemical substances very close to chemical commodities. This categories is used in US and includes all the chemicals produced or imported by US in an amount higher than 1 million pounds. [8]

It is supposed that the number of commercialized chemical products is around 70,000 and around 5% of them are High production volume chemicals. [8]

Related Research Articles

<span class="mw-page-title-main">Polyurethane</span> Polymer composed of a chain of organic units joined by carbamate (urethane) links

Polyurethane refers to a class of polymers composed of organic units joined by carbamate (urethane) links. In contrast to other common polymers such as polyethylene and polystyrene, polyurethane is produced from a wide range of starting materials. This chemical variety produces polyurethanes with different chemical structures leading to many different applications. These include rigid and flexible foams, and coatings, adhesives, electrical potting compounds, and fibers such as spandex and polyurethane laminate (PUL). Foams are the largest application accounting for 67% of all polyurethane produced in 2016.

<span class="mw-page-title-main">Chemical industry</span> Industry (branch), which is engaged in the manufacturing of chemical products

The chemical industry comprises the companies and other organizations that develop and produce industrial, specialty and other chemicals. Central to the modern world economy, it converts raw materials into commodity chemicals for industrial and consumer products. It includes industries for petrochemicals such as polymers for plastics and synthetic fibers; inorganic chemicals such as acids and alkalis; agricultural chemicals such as fertilizers, pesticides and herbicides; and other categories such as industrial gases, speciality chemicals and pharmaceuticals.

<span class="mw-page-title-main">Petrochemical</span> Chemical product derived from petroleum

Petrochemicals are the chemical products obtained from petroleum by refining. Some chemical compounds made from petroleum are also obtained from other fossil fuels, such as coal or natural gas, or renewable sources such as maize, palm fruit or sugar cane.

An antifreeze is an additive which lowers the freezing point of a water-based liquid. An antifreeze mixture is used to achieve freezing-point depression for cold environments. Common antifreezes also increase the boiling point of the liquid, allowing higher coolant temperature. However, all common antifreeze additives also have lower heat capacities than water, and do reduce water's ability to act as a coolant when added to it.

In organic chemistry, ethoxylation is a chemical reaction in which ethylene oxide adds to a substrate. It is the most widely practiced alkoxylation, which involves the addition of epoxides to substrates.

<span class="mw-page-title-main">Tosoh</span>


Tosoh Corporation is a global chemical and specialty materials company. The company was founded in 1935 in Yamaguchi Prefecture, as Toyo Soda Manufacturing Co., Ltd., and in 1987 changed its name to Tosoh Corporation. Today, its corporate headquarters are in Tokyo, Japan.

<span class="mw-page-title-main">Chemical plant</span> Industrial process plant that manufactures chemicals

A chemical plant is an industrial process plant that manufactures chemicals, usually on a large scale. The general objective of a chemical plant is to create new material wealth via the chemical or biological transformation and or separation of materials. Chemical plants use specialized equipment, units, and technology in the manufacturing process. Other kinds of plants, such as polymer, pharmaceutical, food, and some beverage production facilities, power plants, oil refineries or other refineries, natural gas processing and biochemical plants, water and wastewater treatment, and pollution control equipment use many technologies that have similarities to chemical plant technology such as fluid systems and chemical reactor systems. Some would consider an oil refinery or a pharmaceutical or polymer manufacturer to be effectively a chemical plant.

<span class="mw-page-title-main">Straight-chain terminal alkene</span>

Straight-chain terminal alkenes, also called linear alpha olefins (LAO) or normal alpha olefins (NAO), are alkenes (olefins) having a chemical formula CnH2n, distinguished from other alkenes with a similar molecular formula by being terminal alkenes, in which the double bond occurs at the alpha position, and by having a linear (unbranched) hydrocarbon chain.

Chemical engineering is a discipline that was developed out of those practicing "industrial chemistry" in the late 19th century. Before the Industrial Revolution, industrial chemicals and other consumer products such as soap were mainly produced through batch processing. Batch processing is labour-intensive and individuals mix predetermined amounts of ingredients in a vessel, heat, cool or pressurize the mixture for a predetermined length of time. The product may then be isolated, purified and tested to achieve a saleable product. Batch processes are still performed today on higher value products, such as pharmaceutical intermediates, speciality and formulated products such as perfumes and paints, or in food manufacture such as pure maple syrups, where a profit can still be made despite batch methods being slower and inefficient in terms of labour and equipment usage. Due to the application of Chemical Engineering techniques during manufacturing process development, larger volume chemicals are now produced through continuous "assembly line" chemical processes. The Industrial Revolution was when a shift from batch to more continuous processing began to occur. Today commodity chemicals and petrochemicals are predominantly made using continuous manufacturing processes whereas speciality chemicals, fine chemicals and pharmaceuticals are made using batch processes.

<span class="mw-page-title-main">Polyester</span> Category of polymers, in which the monomers are joined together by ester links

Polyester is a category of polymers that contain the ester functional group in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, such as in plants and insects, as well as synthetics such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. Synthetic polyesters are used extensively in clothing.

<span class="mw-page-title-main">Fine chemical</span> Pure chemical substances produced by and for the chemical industry

In chemistry, fine chemicals are complex, single, pure chemical substances, produced in limited quantities in multipurpose plants by multistep batch chemical or biotechnological processes. They are described by exacting specifications, used for further processing within the chemical industry and sold for more than $10/kg. The class of fine chemicals is subdivided either on the basis of the added value, or the type of business transaction, namely standard or exclusive products.

Pelletizing is the process of compressing or molding a material into the shape of a pellet. A wide range of different materials are pelletized including chemicals, iron ore, animal compound feed, plastics, waste materials, and more. The process is considered an excellent option for the storage and transport of said materials. The technology is widely used in the powder metallurgy engineering and medicine industries.

<span class="mw-page-title-main">Chemical substance</span> Matter of constant chemical composition and properties

A chemical substance is a unique form of matter with constant chemical composition and characteristic properties. Chemical substances may take the form of a single element or chemical compounds. If two or more chemical substances can be combined without reacting, they may form a chemical mixture. If a mixture is separated to isolate one chemical substance to a desired degree, the resulting substance is said to be chemically pure.

<span class="mw-page-title-main">Commodity plastics</span> Inexpensive plastics with weak mechanical properties

Commodity plastics or commodity polymers are plastics produced in high volumes for applications where exceptional material properties are not needed. In contrast to engineering plastics, commodity plastics tend to be inexpensive to produce and exhibit relatively weak mechanical properties. Some examples of commodity plastics are polyethylene, polypropylene, polystyrene, polyvinyl chloride, and poly(methyl methacrylate) .Globally, the most widely used thermoplastics include both polypropylene and polyethylene. Products made from commodity plastics include disposable plates, disposable cups, photographic and magnetic tape, clothing, reusable bags, medical trays, and seeding trays.

Commodity chemicals are a group of chemicals that are made on a very large scale to satisfy global markets. The average prices of commodity chemicals are regularly published in the chemical trade magazines and web sites such as Chemical Week and ICIS. There have been several studies of the scale and complexity of this market for example in the USA.

The North East of England Process Industry Cluster (NEPIC) is an economic cluster developed in accordance with Michael Porter's theories and strategies regarding industrial clusters. The chemistry-using sectors in North East England, where more than 1,400 businesses are headquartered in the industry's supply chain, formed this Process Industry Cluster. In the north-east of England, the industry employs approximately 35,000 direct workers and around 190,000 indirect workers, who collectively account for more than one-third of the area's industrial economy. Companies in the cluster produce 35% of the pharmaceuticals and 50% of the petrochemicals used in the UK, making this area the only net exporter of goods from the country. The area has more than £13 billion in exports.

Micronized rubber powder (MRP) is classified as fine, dry, powdered elastomeric crumb rubber in which a significant proportion of particles are less than 100 µm and free of foreign particulates. MRP particle size distributions typically range from 180 µm to 10 µm. Narrower distributions can be achieved depending on the classification technology.

Specialty chemicals are particular chemical products which provide a wide variety of effects on which many other industry sectors rely. Some of the categories of speciality chemicals are adhesives, agrichemicals, cleaning materials, colors, cosmetic additives, construction chemicals, elastomers, flavors, food additives, fragrances, industrial gases, lubricants, paints, polymers, surfactants, and textile auxiliaries. Other industrial sectors such as automotive, aerospace, food, cosmetics, agriculture, manufacturing, and textiles are highly dependent on such products.

Gyratory equipment, used in mechanical screening and sieving is based on a circular motion of the machine. Unlike other methods, gyratory screen operates in a gentler manner and is more suited to handle fragile things, enabling it to produce finer products. This method is applicable for both wet and dry screening.

The chemical industry of India is a major industry in the Indian economy and as of 2022, contributes 7% of the country's Gross Domestic Product (GDP). India is the world's sixth largest producer of chemicals and the third largest in Asia, as of 2022. The value of the Indian chemical industry was estimated at $100 billion dollars in 2019. The chemical industry of India generates employment for five million people. The Indian chemical industry produces 80,000 different chemical products. India was also the third largest producer of plastic in 2019. As of September 2019, the alkali chemical industry produced 71% of all chemicals produced in India. India's chemical industry accounts about 14% of production in Indian industries.

References

  1. 1 2 Encyclopedia of chemical technology. 6: Chlorocarbons and chlorohydrocarbons-C2 to combustion technology (4. ed.- 1993 ed.). New York: Wiley. 1993. p. 536. ISBN   978-0-471-52674-2.
  2. Pollak, Peter (2007). Fine chemicals: the industry and the business. Hoboken, NJ: Wiley-Interscience. ISBN   978-0-470-05075-0.
  3. Mullin, Rick. "Fine Chemicals" (PDF). Enterprise Of The Chemical Sciences (PDF). pp. 41–49.
  4. David J. Brennan, Process Industry Economics: An International Perspective, IChemE, 1998, pp. 14-16. ISBN   0852954611.
  5. "Charles H. Kline, 73, Chemical Consultant". The New York Times. 1992-04-28. ISSN   0362-4331 . Retrieved 2024-01-01.
  6. Emisawa Hiroshi, "How to Manage for Maximum Profit."
  7. (in Italian) http://scuole.federchimica.it/Universita/Schede_di_approfondimento_sui_settori/Chimica_di_base.aspx Archived 2014-12-07 at the Wayback Machine
  8. 1 2 "High Production Volume (HPV) Chemicals". Archived from the original on 2019-03-14. Retrieved 2014-06-16.

See also