In abstract algebra, a commutant-associative algebra is a nonassociative algebra over a field whose multiplication satisfies the following axiom:
where [A, B] = AB − BA is the commutator of A and B and (A, B, C) = (AB)C – A(BC) is the associator of A, B and C.
In other words, an algebra M is commutant-associative if the commutant, i.e. the subalgebra of M generated by all commutators [A, B], is an associative algebra.
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory.
In abstract algebra, a magma, binar, or, rarely, groupoid is a basic kind of algebraic structure. Specifically, a magma consists of a set equipped with a single binary operation that must be closed by definition. No other properties are imposed.
In mathematics, an algebra over a field is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear".
In mathematics, a Poisson algebra is an associative algebra together with a Lie bracket that also satisfies Leibniz's law; that is, the bracket is also a derivation. Poisson algebras appear naturally in Hamiltonian mechanics, and are also central in the study of quantum groups. Manifolds with a Poisson algebra structure are known as Poisson manifolds, of which the symplectic manifolds and the Poisson–Lie groups are a special case. The algebra is named in honour of Siméon Denis Poisson.
In mathematics, a Moufang loop is a special kind of algebraic structure. It is similar to a group in many ways but need not be associative. Moufang loops were introduced by Ruth Moufang (1935). Smooth Moufang loops have an associated algebra, the Malcev algebra, similar in some ways to how a Lie group has an associated Lie algebra.
In abstract algebra, a Jordan algebra is a nonassociative algebra over a field whose multiplication satisfies the following axioms:
In abstract algebra, the term associator is used in different ways as a measure of the non-associativity of an algebraic structure. Associators are commonly studied as triple systems.
Certain commutation relations among the current density operators in quantum field theories define an infinite-dimensional Lie algebra called a current algebra. Mathematically these are Lie algebras consisting of smooth maps from a manifold into a finite dimensional Lie algebra.
Anatoly Ivanovich Maltsev was born in Misheronsky, near Moscow, and died in Novosibirsk, USSR. He was a mathematician noted for his work on the decidability of various algebraic groups. Malcev algebras, as well as Malcev Lie algebras are named after him.
In the theory of von Neumann algebras, a part of the mathematical field of functional analysis, Tomita–Takesaki theory is a method for constructing modular automorphisms of von Neumann algebras from the polar decomposition of a certain involution. It is essential for the theory of type III factors, and has led to a good structure theory for these previously intractable objects.
In mathematics, the split-octonions are an 8-dimensional nonassociative algebra over the real numbers. Unlike the standard octonions, they contain non-zero elements which are non-invertible. Also the signatures of their quadratic forms differ: the split-octonions have a split signature (4,4) whereas the octonions have a positive-definite signature (8,0).
In mathematics, a Malcev algebra over a field is a nonassociative algebra that is antisymmetric, so that
A non-associative algebra (or distributive algebra) is an algebra over a field where the binary multiplication operation is not assumed to be associative. That is, an algebraic structure A is a non-associative algebra over a field K if it is a vector space over K and is equipped with a K-bilinear binary multiplication operation A × A → A which may or may not be associative. Examples include Lie algebras, Jordan algebras, the octonions, and three-dimensional Euclidean space equipped with the cross product operation. Since it is not assumed that the multiplication is associative, using parentheses to indicate the order of multiplications is necessary. For example, the expressions (ab)(cd), (a(bc))d and a(b(cd)) may all yield different answers.
In mathematics, a commutation theorem for traces explicitly identifies the commutant of a specific von Neumann algebra acting on a Hilbert space in the presence of a trace.
In abstract algebra, a Valya algebra is a nonassociative algebra M over a field F whose multiplicative binary operation g satisfies the following axioms:
In mathematics, Hurwitz's theorem is a theorem of Adolf Hurwitz (1859–1919), published posthumously in 1923, solving the Hurwitz problem for finite-dimensional unital real non-associative algebras endowed with a positive-definite quadratic form. The theorem states that if the quadratic form defines a homomorphism into the positive real numbers on the non-zero part of the algebra, then the algebra must be isomorphic to the real numbers, the complex numbers, the quaternions, or the octonions. Such algebras, sometimes called Hurwitz algebras, are examples of composition algebras.
In mathematical genetics, a genetic algebra is a algebra used to model inheritance in genetics. Some variations of these algebras are called train algebras, special train algebras, gametic algebras, Bernstein algebras, copular algebras, zygotic algebras, and baric algebras. The study of these algebras was started by Ivor Etherington (1939).
In algebra, an Okubo algebra or pseudo-octonion algebra is an 8-dimensional non-associative algebra similar to the one studied by Susumu Okubo. Okubo algebras are composition algebras, flexible algebras (A(BA) = (AB)A), Lie admissible algebras, and power associative, but are not associative, not alternative algebras, and do not have an identity element.
In mathematics, an isotopy from a possibly non-associative algebra A to another is a triple of bijective linear maps (a, b, c) such that if xy = z then a(x)b(y) = c(z). This is similar to the definition of an isotopy of loops, except that it must also preserve the linear structure of the algebra. For a = b = c this is the same as an isomorphism. The autotopy group of an algebra is the group of all isotopies to itself (sometimes called autotopies), which contains the group of automorphisms as a subgroup.
Alexander Nikolaevich Varchenko is a Soviet and Russian mathematician working in geometry, topology, combinatorics and mathematical physics.