Comodule over a Hopf algebroid

Last updated

In mathematics, at the intersection of algebraic topology and algebraic geometry, there is the notion of a Hopf algebroid which encodes the information of a presheaf of groupoids whose object sheaf and arrow sheaf are represented by algebras. Because any such presheaf will have an associated site, we can consider quasi-coherent sheaves on the site, giving a topos-theoretic notion of modules. Dually [1] pg 2, comodules over a Hopf algebroid are the purely algebraic analogue of this construction, giving a purely algebraic description of quasi-coherent sheaves on a stack: this is one of the first motivations behind the theory.

Contents

Definition

Given a commutative Hopf-algebroid a leftcomodule [2] pg 302 is a left -module together with an -linear map

which satisfies the following two properties

  1. (counitary)
  2. (coassociative)

A right comodule is defined similarly, but instead there is a map

satisfying analogous axioms.

Structure theorems

Flatness of Γ gives an abelian category

One of the main structure theorems for comodules [2] pg 303 is if is a flat -module, then the category of comodules of the Hopf-algebroid is an Abelian category.

Relation to stacks

There is a structure theorem [1] pg 7 relating comodules of Hopf-algebroids and modules of presheaves of groupoids. If is a Hopf-algebroid, there is an equivalence between the category of comodules and the category of quasi-coherent sheaves for the associated presheaf of groupoids

to this Hopf-algebroid.

Examples

From BP-homology

Associated to the Brown-Peterson spectrum is the Hopf-algebroid classifying p-typical formal group laws. Note

where is the localization of by the prime ideal . If we let denote the ideal

Since is a primitive in , there is an associated Hopf-algebroid

There is a structure theorem on the Adams-Novikov spectral sequence relating the Ext-groups of comodules on to Johnson-Wilson homology, giving a more tractable spectral sequence. This happens through an equivalence of categories of comodules of to the category of comodules of

giving the isomorphism

assuming and satisfy some technical hypotheses [1] pg 24.

See also

Related Research Articles

In mathematics, the tensor product of two vector spaces V and W is a vector space to which is associated a bilinear map that maps a pair to an element of denoted .

In commutative algebra, the prime spectrum of a commutative ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

In physics, charge conjugation is a transformation that switches all particles with their corresponding antiparticles, thus changing the sign of all charges: not only electric charge but also the charges relevant to other forces. The term C-symmetry is an abbreviation of the phrase "charge conjugation symmetry", and is used in discussions of the symmetry of physical laws under charge-conjugation. Other important discrete symmetries are P-symmetry (parity) and T-symmetry.

In mathematics, a Lie algebroid is a vector bundle together with a Lie bracket on its space of sections and a vector bundle morphism , satisfying a Leibniz rule. A Lie algebroid can thus be thought of as a "many-object generalisation" of a Lie algebra.

In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously an algebra and a coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antihomomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations.

<span class="mw-page-title-main">Quantum group</span> Algebraic construct of interest in theoretical physics

In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups, compact matrix quantum groups, and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.

In mathematics, a gerbe is a construct in homological algebra and topology. Gerbes were introduced by Jean Giraud following ideas of Alexandre Grothendieck as a tool for non-commutative cohomology in degree 2. They can be seen as an analogue of fibre bundles where the fibre is the classifying stack of a group. Gerbes provide a convenient, if highly abstract, language for dealing with many types of deformation questions especially in modern algebraic geometry. In addition, special cases of gerbes have been used more recently in differential topology and differential geometry to give alternative descriptions to certain cohomology classes and additional structures attached to them.

In mathematical physics, the gamma matrices, also called the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra It is also possible to define higher-dimensional gamma matrices. When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of spacetime acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts. Spinors facilitate spacetime computations in general, and in particular are fundamental to the Dirac equation for relativistic spin particles. Gamma matrices were introduced by Paul Dirac in 1928.

In a field of mathematics known as differential geometry, a Courant geometry was originally introduced by Zhang-Ju Liu, Alan Weinstein and Ping Xu in their investigation of doubles of Lie bialgebroids in 1997. Liu, Weinstein and Xu named it after Courant, who had implicitly devised earlier in 1990 the standard prototype of Courant algebroid through his discovery of a skew symmetric bracket on , called Courant bracket today, which fails to satisfy the Jacobi identity. Both this standard example and the double of a Lie bialgebra are special instances of Courant algebroids.

In mathematical physics, the Dirac algebra is the Clifford algebra . This was introduced by the mathematical physicist P. A. M. Dirac in 1928 in developing the Dirac equation for spin-1/2 particles with a matrix representation of the gamma matrices, which represent the generators of the algebra.

In ring theory and Frobenius algebra extensions, areas of mathematics, there is a notion of depth two subring or depth of a Frobenius extension. The notion of depth two is important in a certain noncommutative Galois theory, which generates Hopf algebroids in place of the more classical Galois groups, whereas the notion of depth greater than two measures the defect, or distance, from being depth two in a tower of iterated endomorphism rings above the subring. A more recent definition of depth of any unital subring in any associative ring is proposed in a paper studying the depth of a subgroup of a finite group as group algebras over a commutative ring.

In mathematics, the Landweber exact functor theorem, named after Peter Landweber, is a theorem in algebraic topology. It is known that a complex orientation of a homology theory leads to a formal group law. The Landweber exact functor theorem can be seen as a method to reverse this process: it constructs a homology theory out of a formal group law.

In mathematics, in the theory of Hopf algebras, a Hopf algebroid is a generalisation of weak Hopf algebras, certain skew Hopf algebras and commutative Hopf k-algebroids. If k is a field, a commutative k-algebroid is a cogroupoid object in the category of k-algebras; the category of such is hence dual to the category of groupoid k-schemes. This commutative version has been used in 1970-s in algebraic geometry and stable homotopy theory. The generalization of Hopf algebroids and its main part of the structure, associative bialgebroids, to the noncommutative base algebra was introduced by J.-H. Lu in 1996 as a result on work on groupoids in Poisson geometry. They may be loosely thought of as Hopf algebras over a noncommutative base ring, where weak Hopf algebras become Hopf algebras over a separable algebra. It is a theorem that a Hopf algebroid satisfying a finite projectivity condition over a separable algebra is a weak Hopf algebra, and conversely a weak Hopf algebra H is a Hopf algebroid over its separable subalgebra HL. The antipode axioms have been changed by G. Böhm and K. Szlachányi in 2004 for tensor categorical reasons and to accommodate examples associated to depth two Frobenius algebra extensions.

A representation up to homotopy has several meanings. One of the earliest appeared in physics, in constrained Hamiltonian systems. The essential idea is lifting a non-representation on a quotient to a representation up to strong homotopy on a resolution of the quotient. As a concept in differential geometry, it generalizes the notion of representation of a Lie algebra to Lie algebroids and nontrivial vector bundles. As such, it was introduced by Abad and Crainic.

In mathematics, the Kodaira–Spencer map, introduced by Kunihiko Kodaira and Donald C. Spencer, is a map associated to a deformation of a scheme or complex manifold X, taking a tangent space of a point of the deformation space to the first cohomology group of the sheaf of vector fields on X.

This is a glossary of algebraic geometry.

A Lie bialgebroid is a mathematical structure in the area of non-Riemannian differential geometry. In brief a Lie bialgebroid are two compatible Lie algebroids defined on dual vector bundles. They form the vector bundle version of a Lie bialgebra.

In mathematics, a sheaf of O-modules or simply an O-module over a ringed space (X, O) is a sheaf F such that, for any open subset U of X, F(U) is an O(U)-module and the restriction maps F(U) → F(V) are compatible with the restriction maps O(U) → O(V): the restriction of fs is the restriction of f times the restriction of s for any f in O(U) and s in F(U).

References

  1. 1 2 3 Hovey, Mark (2001-05-16). "Morita theory for Hopf algebroids and presheaves of groupoids". arXiv: math/0105137 .
  2. 1 2 Ravenel, Douglas C. (1986). Complex cobordism and stable homotopy groups of spheres. Orlando: Academic Press. ISBN   978-0-08-087440-1. OCLC   316566772.