Complex network zeta function

Last updated

Different definitions have been given for the dimension of a complex network or graph. For example, metric dimension is defined in terms of the resolving set for a graph. Dimension has also been defined based on the box covering method applied to graphs. [1] Here we describe the definition based on the complex network zeta function. [2] This generalises the definition based on the scaling property of the volume with distance. [3] The best definition depends on the application.

Contents

Definition

One usually thinks of dimension for a set which is dense, like the points on a line, for example. Dimension makes sense in a discrete setting, like for graphs, only in the large system limit, as the size tends to infinity. For example, in Statistical Mechanics, one considers discrete points which are located on regular lattices of different dimensions. Such studies have been extended to arbitrary networks, and it is interesting to consider how the definition of dimension can be extended to cover these cases. A very simple and obvious way to extend the definition of dimension to arbitrary large networks is to consider how the volume (number of nodes within a given distance from a specified node) scales as the distance (shortest path connecting two nodes in the graph) is increased. For many systems arising in physics, this is indeed a useful approach. This definition of dimension could be put on a strong mathematical foundation, similar to the definition of Hausdorff dimension for continuous systems. The mathematically robust definition uses the concept of a zeta function for a graph. The complex network zeta function and the graph surface function were introduced to characterize large graphs. They have also been applied to study patterns in Language Analysis. In this section we will briefly review the definition of the functions and discuss further some of their properties which follow from the definition.

We denote by the distance from node to node , i.e., the length of the shortest path connecting the first node to the second node. is if there is no path from node to node . With this definition, the nodes of the complex network become points in a metric space. [2] Simple generalisations of this definition can be studied, e.g., we could consider weighted edges. The graph surface function, , is defined as the number of nodes which are exactly at a distance from a given node, averaged over all nodes of the network. The complex network zeta function is defined as

where is the graph size, measured by the number of nodes. When is zero all nodes contribute equally to the sum in the previous equation. This means that is , and it diverges when . When the exponent tends to infinity, the sum gets contributions only from the nearest neighbours of a node. The other terms tend to zero. Thus, tends to the average degree for the graph as .

The need for taking an average over all nodes can be avoided by using the concept of supremum over nodes, which makes the concept much easier to apply for formally infinite graphs. [4] The definition can be expressed as a weighted sum over the node distances. This gives the Dirichlet series relation

This definition has been used in the shortcut model to study several processes and their dependence on dimension.

Properties

is a decreasing function of , , if . If the average degree of the nodes (the mean coordination number for the graph) is finite, then there is exactly one value of , , at which the complex network zeta function transitions from being infinite to being finite. This has been defined as the dimension of the complex network. If we add more edges to an existing graph, the distances between nodes will decrease. This results in an increase in the value of the complex network zeta function, since will get pulled inward. If the new links connect remote parts of the system, i.e., if the distances change by amounts which do not remain finite as the graph size , then the dimension tends to increase. For regular discrete d-dimensional lattices with distance defined using the norm

the transition occurs at . The definition of dimension using the complex network zeta function satisfies properties like monotonicity (a subset has a lower or the same dimension as its containing set), stability (a union of sets has the maximum dimension of the component sets forming the union) and Lipschitz invariance, [5] provided the operations involved change the distances between nodes only by finite amounts as the graph size goes to . Algorithms to calculate the complex network zeta function have been presented. [6]

Values for discrete regular lattices

For a one-dimensional regular lattice the graph surface function is exactly two for all values of (there are two nearest neighbours, two next-nearest neighbours, and so on). Thus, the complex network zeta function is equal to , where is the usual Riemann zeta function. By choosing a given axis of the lattice and summing over cross-sections for the allowed range of distances along the chosen axis the recursion relation below can be derived

From combinatorics the surface function for a regular lattice can be written [7] as

The following expression for the sum of positive integers raised to a given power will be useful to calculate the surface function for higher values of :

Another formula for the sum of positive integers raised to a given power is

as .

The Complex network zeta function for some lattices is given below.

 :
 :
 : )
 :
 : (for near the transition point.)

Random graph zeta function

Random graphs are networks having some number of vertices, in which each pair is connected with probability , or else the pair is disconnected. Random graphs have a diameter of two with probability approaching one, in the infinite limit (). To see this, consider two nodes and . For any node different from or , the probability that is not simultaneously connected to both and is . Thus, the probability that none of the nodes provides a path of length between nodes and is . This goes to zero as the system size goes to infinity, and hence most random graphs have their nodes connected by paths of length at most . Also, the mean vertex degree will be . For large random graphs almost all nodes are at a distance of one or two from any given node, is , is , and the graph zeta function is

Related Research Articles

In mathematics, a series is, roughly speaking, an addition of infinitely many terms, one after the other. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures in combinatorics through generating functions. The mathematical properties of infinite series make them widely applicable in other quantitative disciplines such as physics, computer science, statistics and finance.

In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where the infinite series representation which initially defined the function becomes divergent.

The Liouville lambda function, denoted by λ(n) and named after Joseph Liouville, is an important arithmetic function. Its value is +1 if n is the product of an even number of prime numbers, and −1 if it is the product of an odd number of primes.

<span class="mw-page-title-main">Euler's constant</span> Constant value used in mathematics

Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:

<span class="mw-page-title-main">Harmonic number</span> Sum of the first n whole number reciprocals; 1/1 + 1/2 + 1/3 + ... + 1/n

In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers:

In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.

In mathematics, a Dirichlet series is any series of the form where s is complex, and is a complex sequence. It is a special case of general Dirichlet series.

The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares. It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. Since the problem had withstood the attacks of the leading mathematicians of the day, Euler's solution brought him immediate fame when he was twenty-eight. Euler generalised the problem considerably, and his ideas were taken up more than a century later by Bernhard Riemann in his seminal 1859 paper "On the Number of Primes Less Than a Given Magnitude", in which he defined his zeta function and proved its basic properties. The problem is named after Basel, hometown of Euler as well as of the Bernoulli family who unsuccessfully attacked the problem.

In mathematics, a divergent series is an infinite series that is not convergent, meaning that the infinite sequence of the partial sums of the series does not have a finite limit.

In mathematics, the Lerch transcendent, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Czech mathematician Mathias Lerch, who published a paper about a similar function in 1887. The Lerch transcendent, is given by:

In mathematics, the discrete Laplace operator is an analog of the continuous Laplace operator, defined so that it has meaning on a graph or a discrete grid. For the case of a finite-dimensional graph, the discrete Laplace operator is more commonly called the Laplacian matrix.

In mathematics and theoretical physics, zeta function regularization is a type of regularization or summability method that assigns finite values to divergent sums or products, and in particular can be used to define determinants and traces of some self-adjoint operators. The technique is now commonly applied to problems in physics, but has its origins in attempts to give precise meanings to ill-conditioned sums appearing in number theory.

In algebraic geometry, the Chow groups of an algebraic variety over any field are algebro-geometric analogs of the homology of a topological space. The elements of the Chow group are formed out of subvarieties in a similar way to how simplicial or cellular homology groups are formed out of subcomplexes. When the variety is smooth, the Chow groups can be interpreted as cohomology groups and have a multiplication called the intersection product. The Chow groups carry rich information about an algebraic variety, and they are correspondingly hard to compute in general.

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

An important question in statistical mechanics is the dependence of model behaviour on the dimension of the system. The shortcut model was introduced in the course of studying this dependence. The model interpolates between discrete regular lattices of integer dimension.

Algebraic signal processing (ASP) is an emerging area of theoretical signal processing (SP). In the algebraic theory of signal processing, a set of filters is treated as an (abstract) algebra, a set of signals is treated as a module or vector space, and convolution is treated as an algebra representation. The advantage of algebraic signal processing is its generality and portability.

In number theory, an average order of an arithmetic function is some simpler or better-understood function which takes the same values "on average".

In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system.

<span class="mw-page-title-main">Hyperbolic geometric graph</span>

A hyperbolic geometric graph (HGG) or hyperbolic geometric network (HGN) is a special type of spatial network where (1) latent coordinates of nodes are sprinkled according to a probability density function into a hyperbolic space of constant negative curvature and (2) an edge between two nodes is present if they are close according to a function of the metric (typically either a Heaviside step function resulting in deterministic connections between vertices closer than a certain threshold distance, or a decaying function of hyperbolic distance yielding the connection probability). A HGG generalizes a random geometric graph (RGG) whose embedding space is Euclidean.

An ordinary fractal string is a bounded, open subset of the real number line. Such a subset can be written as an at-most-countable union of connected open intervals with associated lengths written in non-increasing order; we also refer to as a fractal string. For example, is a fractal string corresponding to the Cantor set. A fractal string is the analogue of a one-dimensional "fractal drum," and typically the set has a boundary which corresponds to a fractal such as the Cantor set. The heuristic idea of a fractal string is to study a (one-dimensional) fractal using the "space around the fractal." It turns out that the sequence of lengths of the set itself is "intrinsic," in the sense that the fractal string itself contains information about the fractal to which it corresponds.

References

  1. Goh, K.-I.; Salvi, G.; Kahng, B.; Kim, D. (2006-01-11). "Skeleton and Fractal Scaling in Complex Networks". Physical Review Letters. 96 (1). American Physical Society (APS): 018701. arXiv: cond-mat/0508332 . doi:10.1103/physrevlett.96.018701. ISSN   0031-9007. PMID   16486532.
  2. 1 2 O. Shanker (2007). "Graph Zeta Function and Dimension of Complex Network". Modern Physics Letters B. 21 (11): 639–644. Bibcode:2007MPLB...21..639S. doi:10.1142/S0217984907013146.
  3. O. Shanker (2007). "Defining Dimension of a Complex Network". Modern Physics Letters B. 21 (6): 321–326. Bibcode:2007MPLB...21..321S. doi:10.1142/S0217984907012773.
  4. O. Shanker (2010). "Complex Network Dimension and Path Counts". Theoretical Computer Science. 411 (26–28): 2454–2458. doi: 10.1016/j.tcs.2010.02.013 .
  5. K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, Wiley, second edition, 2003
  6. O. Shanker (2008). "Algorithms for Fractal Dimension Calculation". Modern Physics Letters B. 22 (7): 459–466. Bibcode:2008MPLB...22..459S. doi:10.1142/S0217984908015048.
  7. O. Shanker (2008). "Sharp dimension transition in a shortcut model". J. Phys. A: Math. Theor. 41 (28): 285001. Bibcode:2008JPhA...41B5001S. doi:10.1088/1751-8113/41/28/285001.